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ABSTRACT 
This paper presents the dynamic modeling and fuzzy sliding 

mode control (FSMC) for a spacecraft with flexible appendages. 
A first-order approximate model (FOAM) of the flexible 
spacecraft system is formulated by using Hamilton’s principles 
and assumed mode method (AMM), taking into account the 
second-order term of the coupling deformation field. The use of 
classical Sliding Mode Control (SMC) presents a major problem 
that appears in the form of chattering. For highly flexible 
structural models, ideal sliding surface producing pure rigid body 
motion may not be achievable. In this paper, the discontinuity in 
the sliding mode controller is smoothened inside a thin boundary 
layer by using fuzzy logic (FL) techniques so that the chattering 
phenomenon is effectively reduced. The robustness of SMC only 
holds in the sliding mode domain (SMD). However, when the 
amplitude of the actuators is limited, SMD will be restricted to 
some local domain near zero on the switching surface. Control 
input saturation is also explicitly considered in the FSMC 
approach. The new features and advantages of the proposed 
approach are the use of new dynamic equations of motion of 
flexible spacecraft systems, and the design of FSMC by taking 
into account the control input saturation. To study the 
effectiveness of the corresponding control scheme, the classical 

SMC case is also developed for the control system. Numerical 
simulations are performed to show that rotational maneuvers 
and vibration suppression are accomplished in spite of the 
presence of disturbance torques, model uncertainty and control 
saturation nonlinearity. 
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1. INTRODUCTION 

Mechanical systems undergoing high–speed motions can 
produce dynamic stiffening due to the coupling between rigid 
motion and elastic deflection [1]. These are hard to be dealt 
with traditional dynamic analysis techniques. Recent researches 
indicate that [2, 3] the second order term in the coupling 
deformation field has a ‘stiffening’ effect on the frequencies 
and that the dynamic stiffening is accounted for. In this paper, 
we take into account the second-order term of the coupling 
deformation field, and obtain the first-order approximate model 
(FOAM) of the flexible spacecraft. 

Recently, several studies on the control of flexible satellites 
have been done, and linear and nonlinear control systems have 
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been designed [4]. But research on the FOAM of flexible 
spacecrafts is rare [5]. Sliding mode control (SMC) has been 
known theoretically as a powerful control technique capable of 
providing very robust control, even invariant under certain 
condition, with respect to system parameter variations and 
external disturbances [6]. This superb system performance only 
holds in the sliding mode domain (SMD) on the whole switching 
surfaces, which is easily satisfied with ideal control input. 
However, in practice, the amplitude of the actuators on the 
spacecraft is limited by physical constraints. Therefore, SMD 
does not cover the entire switching surface and will be restricted 
to some local domain near zero on the switching surface. Thus, 
design of SMC input that is constrained by saturation is studied in 
this paper. Also, by using fuzzy logic (FL) techniques, the 
discontinuity in the sliding mode controller is smoothened inside 
a time-varying boundary layer so that the chattering phenomenon 
is efficiently reduced. 

2. EQUATIONS OF MOTION AND KINEMATICS 
As shown in Fig.1, a rigid hub with two elastic beams 

attached is considered as the model of slewing flexible 
spacecrafts. The beams represent spacecraft structural elements 
such as on-board antenna and solar array. Although the design 
approaches of the present work can be applied to multi-axis 
maneuvers, for simplicity only single-axis maneuver is 
considered. The spacecraft is controlled by a torquer on the rigid 
hub. When the spacecraft is maneuvered, the elastic members 
connected to the hub experience structural deformation. 

 

 
 

Fig.1: Flexible spacecraft model 
 
The deformation vector pu can be represented as [2] 
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p cu u u w w w           (1) 

where 1w  represents the pure axial deformation of the centroidal 

axis and 2w  represents the transverse deformation along the y-

axis of the reference frame xy . The second order term cw  is 
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It should be noted that this term can have a significant impact 
on the beam’s dynamic equations when it undergoes large rigid-
body motion. 

By using assumed mode method (AMM) and Lagrangian 
principle, the FOAM of the flexible spacecraft can be derived as 
[3]: 
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where 1R M  is the rotary inertia of the system, 

1 1

n n
q q R M  and 

2 2

n n
q q R M  are the beam generalized 

elastic mass matrices, 
1

1 n
q R

M , 
2

1 n
q R

M , 

1

1n
q R

M  and 
2

1n
q R

M represent the nonlinear inertia 

coupling between the motion of the reference frame and the 
elastic deformations, 

1 1

n n
q q R K  and 

2 2

n n
q q R K  are 

generalized elastic stiffness matrices that are shown to be 
affected by both the motion of the reference frame and the 
elastic deformations, Q  represents inertia forces,  is the 

rotational external torque. The parameters in Eq.(3) can be 
referred to in reference [3]. 

The newly established Eq.(3) is called FOAM. Eq.(3) 
without the terms induced by the second order term cw  is 

called traditional linear approximate model (TLAM), which is 
widely used to investigate the dynamics and control of flexible 
spacecrafts. A simplified first-order approximate model 
(SFOAM) of the flexible spacecraft can be derived from 
FOAM by deleting the elements related to Q , 1q and 1q :  
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where M , 

2qM , 
2q M , 

2 2q qM  and 
2 2q qK  can also be 

obtained by deleting the elements related to 1q  and 1q  in 

Eq.(3). 
It is noted that SFOAM will be used for controller design. 

3. FUZZY SLIDING MODE CONTROLLER DESIGN 
WITH INPUT SATURATION 

 
In order to maneuver the rotation angle from 0  to d , we 

design control law  u t  which satisfies 
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3.1 Design of sliding mode control 
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Next, the reaching law method and fuzzy time-varying 

boundary layer thickness are adopted to achieve a trade-off 
between tracking precision and robustness to modeling 
inaccuracies. 

Consider the following nonlinear system: 
 

   Plant:                   , ,nx t f t b t u t d t  x x     (6) 

 

Model:                  ˆ ˆ, ,nx t f t b t u t x x         (7) 

 

where   T
1, , , nx x x  

  x =  is the state vector,  u t  is the 

scalar control input, and  d t  is the external disturbance. 

Assume the nonlinear function  ,f tx  and  d t  are not 

exactly known, however 
 

      ˆ, , ,f t f t f t  x x x    (8) 

    , ,f t F t x x        (9) 

       d t D t             (10) 

 

where  ˆ ,f tx ,  ,f t x  and  ,F tx  represent the known 

model of the system, model uncertainties, and upper bound for 
uncertainties, respectively; and  D t  is the upper bound of 

 d t . Furthermore, assume that  ,b tx  is not exactly known, 

however 
 

   min max0 , , , 0b b t b b t t    x x    (11) 

 
and 

    1 2

min max
ˆ ,b t b bx       (12) 

 

Let    1 1, , , n n
d d d d= = x x x x x x        e x x  be 

the tracking error. Furthermore, let us define a time-varying 
sliding surface  s e  with 
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where    1 1i i
i de x x = , for 1, 2, ,i n  , and the characteristic 

polynomial of Eq. (13) is Hurwitz. The design parameters ic  

determine the speed of response in sliding mode and steady state 
response of the system, which will be discussed in the next 
section. 

Three approaches for specifying the reaching condition have 
been presented in [6]. 

a) The direct switching function approach 
 0ss                      (14) 

b) The Lyapunov function approach 
 ss s                      (15) 

where   is a positive constant. 

c) The reaching law approach 
 

 sgn( )s s ks                 (16) 

 
where   and k  are positive constants. The reaching 

condition (14) is global but does not guarantee a finite 
reaching time. On the other hand, the reaching law (15) and 
(16) not only have global characteristics, but also guarantee a 
finite reaching time.  

A thin boundary layer neighboring the switching surface is 
used here to smooth out the control discontinuity.  
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where  t  is the boundary layer thickness. 

The control input  u t  in (6) is made to satisfy the 

following reaching condition [6]: 
 

  ss s                   (18) 

 
where   is a strictly positive constant. 

Differentiating (13) and rearranging it using (6) we 
obtain 
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Combining the reaching condition (18) and the reaching 

law(16), we obtain a novel reaching law with time-varying 
boundary layer: 
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The merits of the proposed novel reaching law (20) are: 

(i) chattering can be reduced by tuning parameters   and k  

[7]; and (ii) the boundary layer is used here to achieve a trade-
off between tracking precision and robustness. 

Then we can derive the control input from(6), (7) and 
(20) as follows: 
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where 
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Note that 

   1 ˆ, ,b t b t  x x  

where  1 2

max minb b  .  

Rewrite Eq.(24), we derive: 
 

           ˆ, , 1k t F t D t t u t          
x x  (25) 

 
We can see that, the control parameter  ,k tx  has been 

increased in order to account for the uncertainty on the control 
gain b , parameter uncertainty and disturbance. 

 
3.2 Design of fuzzy boundary layer 
 
Chattering in the control signal is one of the most important 

problems met in sliding mode control applications. Different 
methods have been presented in the literature [8, 9]. Utkin [8] 
investigated the chattering problem in sliding mode control 
systems, and pointed out that, the chattering amplitude can be 
reduced for discontinuous control with state dependent gain. In 
fact, the boundary layer approach adopts the similar idea. It is 
indicated that [9], the determination of a suitable boundary layer 
thickness which will assure best performance and still eliminate 
chattering. Next, we will use FL to on-line tune the boundary 
layer thickness. The fuzzy boundary layer leads to a strategy that 
adjusts the thickness of the boundary   automatically. This 

fuzzy system adopts the sliding surfaces s  and its derivation s  
as inputs and the thickness   of the boundary layer as the 

output.  
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Fig.2: Membership functions 
 
The multiple input single output rule base is presented in 

Tab.1, where ZR, SS, MM and BB stand for zero, positive small, 

positive medium and positive big. An example fuzzy rule in 
Tab.1 is: 

IF s  is BB AND s  is BB THEN   is BB 

where “AND” is defined by A  AND B  = A B   for 

any two membership values A  and B  over the fuzzy 

subsets A and B, respectively. 
This can be implied that IF the state trajectory is far from 

the sliding surface AND moves fast, THEN the thickness of the 
boundary layer should be big. The results derived by using 
those fuzzy rules are shown in Fig.3. The results show that the 
thickness of the boundary layer can be well tuned, according to 
the distance of the state point to sliding surface and its 
derivation. Relevant discussions can refer to [9]. 

 
Tab.1: The fuzzy rules for s , s  and   

  
s  

ZR SS MM BB 
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ZR ZR ZR SS SS 
SS ZR SS SS MM 

MM SS SS MM BB 
BB SS MM BB BB 
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| |s
| |s

 
 

Fig.3: The 3D plot of s , s  and   

 
3.3 Design of linear switching line with bounded inputs 

 
In this section, we will investigate the sliding mode 

domain (SMD) of SMC with bounds on the control action. The 
aim is to achieve robustness in the maximized sliding mode 
domain on the switching surfaces. 

Firstly, we consider the design of SMC for a single-input 
LTI system with bounded input: 

 
 , 0x x u u K K   A B     (26) 

The state vector x  is n -dimensional. A and B are 
constant matrices of appropriate dimensions. A linear switching 
surface is selected  

 : 0s x S               (27) 
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where S  is n -dimensional vector, 1SB , and  1n   poles 

of the equivalent system are stable 
 

  x x I BS            (28) 

where I  is a unit matrix. 
The bounded control law 
 

 ( )u Ksgn s                 (29) 

 
is considered. Then the question asked is how to select the 
switching surface   0s x   to maximize the SMD. 

The closed loop system can be viewed as Lur’e-type system, 
i.e., the memoryless nonlinear feedback part (29) to the forward 
LTI system belongs to the sector [0, ∞). If the transfer function of 
the linear subsystem is so-called positive real, then it has 
important properties which may lead to the generation of a 
Lyapunov function for the whole system.  

The following theorem is valid. 
 
Theorem 1 For the system (1), if A is Hurwitz and  ,A B  

is controllable, then by choosing the stable switching surface 
   : 0s x x S            (30) 

where 1SB and  ,S A  is observable. 

Then SMD is  

  : 0,D x x K x K    S SA        (31) 

and the initial state from any point of the state space approaches 
to the SMD within finite time.                □ 

Proof Firstly, considering the linear switching surface (30),  
and reaching condition[6], we have 
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


       (32) 

 
That is K x K  SA , so the SMD is given by (31). 

Secondly, considering that the LTI system is a minimum 
realization of the strict positive transfer function, then the LTI 
system is strictly passive [7]. A radial unbounded Lyapunov 
function can be chosen as a storage function by using KYP 
lemma as in [7]. This guarantees that the closed loop system is 
globally exponentially stable. So if a ball N near zero is 
considered such that 

    , : |nN x x R x           (33) 

where 

 0
K 

SA
               (34) 

then the initial state from any point of the state space reaches 
inside the ball within finite time. That is, the initial state from any 
point of the state space approaches to the SMD described in (31) 
within finite time.                              □ 

The control law (29) guarantees that the trajectory of the 
solution starting from any initial state of (26) reaches to the 
SMD (31) on the switching surface within a finite time and 
approaches to zero thereafter. 

Next, a rigid spacecraft undergoing single-axis maneuver 
will be investigated for simplicity  

 

 J T                  (35) 
 

where J  is the rotational inertia of the rigid spacecraft, T is 
the constant rotational torque, which is constrained by  
 

 , 0T K K                   (36) 

 
Without loss of generality, it is assumed that the flexible 

spacecraft maneuvers from an initial angel 0  to 0d  . A 

linear switching line is defined as 
 

 , 0s c c               (37) 

 
where c  is the slope of the linear switching line, which 
cannot be chosen arbitrarily with bounded inputs. 
 

 
Fig.4: Sliding mode domain on linear switching line 

 
As shown in Fig.4, 1P  and 2P  are the initial points 

 0 ,0  in the phase plane. With the restriction of the control 

input (36), it can be derived from the theorem 1 that the SMD 
on the switching line is restrained to the local domain AB near 
zero: 
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The SMD is maximized when the optimized coefficient c  

is chosen as  

 
0

3

2

K
c

J 
              (39) 

4. SIMULATIONS AND RESULTS 
In this section, simulation results for the dynamics of a 

flexible spacecraft are presented using Mathematica and Visual 
C++. A slewing maneuver of the spacecraft is used to 
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demonstrate the applicability of the FSMC presented in Sections 
2 and 3. A 4th-order Runge-Kutta program with adaptive step-size 
is used to numerically solve the differential equations. The 
physical parameters of the rigid-flexible system are shown in 
Tab.2. 

 
Tab.2:  Physical parameters 

Property Symbol Value 
Beam length L  12m 
Mass per unit volume   2.8×103 kg/m3 
Cross-Section A  7.5×10-5m2 
Young’s modulus E  7.0×1010 N/m2 
Beam area moment of inertia I  7.2×10-9m4 
Hub moment of inertia hJ  500kgm2 
Hub radius r  0.5m 

 
4.1 Free vibrations of the flexible spacecraft system 

 
Consider the flexible spacecraft model, as shown in Fig.1. 

We will investigate the free vibration of FOAM and TLAM. The 
angular velocity of the hub starts from zero according to the 
following profile 
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2
sin 0
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w w
t t t T
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w t T
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 

     (40) 

 
where 10T s , 0 6 /w rad s . 

Fig. 5 shows the tip deflection of the beam by using the two 
models. It can be seen that there is a significant difference 
between the tip deflections by using the TLAM (dashed line) 
compared to the FOAM (solid line). We can see that, the 
amplitude of the resulting tip deflection using the TLAM 
becomes much larger compared to when using the FOAM at 

3.5t s . Moreover, the resulting tip deflection using the TLAM 
has exceeded the small deformation assumption. Because the 
second order term in deformation field is not included, the elastic 
stiffness matrix may be negative definite and the system becomes 
unstable. From the above, it is shown that the second order term 
in the deformation field can have significant effect on the 
dynamic behavior of flexible multibody systems. 

 

 
Fig.5: The tip displacement response of the flexible 

appendages 
 

4.2 Fuzzy sliding mode control of the flexible spacecraft 
 
By rearranging Eq.(4), we can derive 
 

 
2 2 2 2 2 2 2 2 2

1 1
2q q q q q q q q qM       M M M M M K q   (41) 

 
The control input can be obtained the same way as in 

Eq.(22) 

        1ˆˆ , ,u t b t k t sat s   x x   (42)

where  
 

   
2 2 2 2 2 2 2 2 2

1 1
2ˆ q q q q q q q q qu t M c       M M M M M K q  (43) 

           ˆ, , 1k t f t D t t u t           
x x   (44) 

where 

   2 2 2 2 2

2 2 2 2

1
2

1
, q q q q q

q q q q

f t
M



  






M M K q

M M M
x         (45) 

 
The proposed controller derived from SFOAM is used for 

rest-rest attitude maneuvering of the FOAM. Our aim is to 
maneuver the attitude of the spacecraft from 0 2rad   to 

0d  , and suppress the flexible vibrations simultaneity. The 

control parameters are selected to be ˆ 1b  , 2  , 0.2  , 

  0D t  , 0  , 0.2c  , and 50K Nm . 

Although we are dealing with infinite-dimensional system, 
it is impossible to use infinite number of modes in the 
simulation. To make the simulation more meaningful, two 
measures are taken: (i) a relative large number of flexible 
modes is chosen in the FOAM, which are used for the 
simulation; (ii) feedback signals associated with flexibility are 
assumed to be from the first mode, because the lower frequency 
component is dominant [8]. Thus, the assumed mode n  of the 
FOAM and SFOAM is chosen as 5 and 1, respectively. 

Fig. 6 shows the attitude angle of the flexible spacecraft. It 
can be seen that, attitude angle control was accomplished in the 
closed-loop system. When c  is chosen as 0.5, the time 
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response of the attitude angle has overshot. When c  is chosen 
as 0.1, long settling time will be endured. In the control of the 
flexible appendage, what we are concerned with is the motion of 
the tip. Accordingly, the tip motion of the appendages is given in 
Fig.7. We can find that for larger or smaller c  values, both 
exhibit larger tip deformation. Thus, the parameter c  discussed 
in Section 3.3 not only meets precision requirements of the 
attitude angle, but also results in smaller tip deformation. The 
bounded control input is shown in Fig.8. It can be seen that the 
use of boundary layer eliminates the chattering and generates a 
continuous control. 
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Fig.6: Attitude angle 
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Fig.7: Tip deformation of flexible appendages 
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Fig.8: Control input 

5. CONCLUSIONS 
This paper presented the development of the FOAM and 

SFOAM methods for a flexible spacecraft. The free vibration 
of the FOAM and TLAM has been investigated to illustrate the 
validity of the FOAM when experiencing high rotational 
speeds. The proposed control law has been presented by 
utilizing FL and SMC theory with input saturation. Numerical 
simulations were provided to show the effectiveness of the 
presented controller in the rotational maneuver and vibration 
suppression in spite of the presence of model uncertainty and 
control saturation nonlinearity. 
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