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Abstract— This paper reports experimental and analytical results 
of a Hybrid Mechanism Mobile Robot (HMMR) designed for 
field and military applications. The HMMR presented in this 
paper constitutes the second generation of a mobile robot that 
combines locomotion with manipulation in a symmetric invertible 
platform. The experimental results highlight the ability of the 
robot to operate in an unstructured environment and overcome 
obstacles that are much taller than its folded structure. The 
analytical results on the other hand reflect the ability of the robot 
to adapt the arm’s posture to the magnitude of the external load 
during manipulation in order to prevent tip-over instability. This 
adaptability is controlled by an optimization algorithm that 
updates the position of the mobile base with respect to the object, 
and accordingly, calculates a global arm configuration that 
minimizes the eccentricity of the external loading and maximizes 
the payload capacity of the arm. 

Keywords- Mobile Robot, adaptive manipulation, field testing, 
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I. INTRODUCTION 
THE incorporation of robots in a human-inhabited 

environment is a trend that continues to thrive given the 
significant role that robots play in augmenting human faculty.  
The ability of the robot to accomplish tasks without fear or 
objection is especially desirable for the execution of missions 
in dangerous conditions, such as in hostile military 
environments. In military applications specifically, the use of 
field robots is becoming increasingly important because of the 
potential they hold in reducing the soldiers’ exposure to 
dangerous scenarios, such as combat missions and land mines. 

However, the substitution of soldiers by robot fighters 
also imposes significant engineering challenges. For instance, 
the unstructured nature of a realistic urban setting requires the 
robot to avoid [1]–[3] or adapt to obstacles that are present in 
this environment. Such obstacles include stairs, sidewalk 
ramps or any other types of urban architecture. Furthermore, 
the interaction of the robot with the surroundings can only be 
accomplished if the robot is equipped with a manipulator arm. 
This imposes additional challenges that relate to the motion 
control of the arm, the autonomy level of the end-effector and 

the dynamic balance of the robot during real-time sensor-
based manipulation. 

To address aspects of these issues, a hybrid mobile robot 
was proposed [4]–[7] that is capable of overcoming 
architectural obstacles by deploying its arm as a leverage. A 
second generation of this robot, called the HMMR (Hybrid 
Mechanism Mobile Robot) (Fig. 1), was developed to enhance 
the manipulation capabilities of the arm and strengthen the on-
board sensorial and computational capacity necessary for the 
execution of autonomous maneuvers such as adaptive 
manipulation and dynamic stability.  

In the context of stability, the balance of a mobile robot 
during manipulation is dictated by the tilting moment the arm 
and the eccentric load created around the pivot axis of the 
mobile platform. In the event where this moment exceeds the 
stabilizing moment generated by the platform’s weight, the 
robot will have the tendency to lose balance and tip over. 
Thus, for real-time mobile robotic applications, it becomes 
critical to equip the robot with the appropriate sensing means 
and algorithm that enable the mobile base to detect the 
potential onset of dynamic destabilization, and adapt to it in 
order to lessen the risk of tip-over instability.  

 

 
 

Figure 1. A prototype of the HMMR showing the navigational system, the 
mobile base, the arm and the end-effector 

 
In this direction, this paper addresses the problem of 
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of the paper, we discuss critical details of the HMMR’s 
hardware layout and present experimental results that validate 
the ability of the robot to use its arm as a leverage to negotiate 
tall obstacles. In the second section, we focus on the adaptive 
manipulation capabilities of the HMMR, and introduce an 
algorithm that enables the robot to adapt its position and arm 
posture to the external load in order to maintain the dynamic 
balance of the mobile base. The effectiveness of the proposed 
algorithm is further demonstrated through simulation results 
derived from a case-study manipulation scenario.  

 

II. HARDWARE LAYOUT OF THE HMMR 

The HMMR’s tracked platform possesses the overall 
dimensions of 530(W)×630(L)×140(H) mm and a measured 
static weight of 51Kg. The driving mechanism consists of two 
identical tracked units (Fig. 1), left and right, each driven 
independently by one motor M1 through a planetary gearbox 
(ratio 32:1), a bevel gear (ratio 3:1) and a pulley assembly 
(Fig. 2-A). Motor M1 is a brushless DC motor operating at 48 
Volts and providing a peak power of 210 Watts with a 
maximum motor shaft speed of 9200 RPM and a peak torque 
at the pulleys of 27 N·m. In addition to the two tracked driving 
units, the HMMR carries a central dual-link manipulator arm 
cascaded between the tracks in a way to maintain the 
morphological symmetry of the platform. This symmetry 
allows the robot to achieve mobility under flip over conditions 
and is ideal for operation on rugged terrain where the risk of 
tipping is always present. 

The central arm consists of two actuated joints and a 
three-finger end-effector. The two joints of the serial arm are 
revolute and are actuated by two brushless electrical motors 
M2 located under the timing belts on both sides of the arm 
(Fig. 2-B). Motors M2 provide a peak torque of 150 N·m at 8 
RPM after three stages of amplification consisting of a 
harmonic drive (ratio 120:1), a bevel gear (ratio 3:1) and a 
sprocket-chain assembly (ratio 2.9:1). The left motor drives 
the lower joint (joint 1), while the right motor drives the upper 
joint (joint 2) through a chain transmission that runs along the 
length of link 2. The shafts of joint 2 and 3 further carry a set 
of passive wheels (Fig. 1) that rotate freely around their 
respective axis. Revolute joints 1 and 2 of the arm have 
endless rotation, where link 3 can complete a full rotation 
inside link 2, and link 2 can complete a full rotation inside the 
tracked units allowing the arm to deploy from either side of 
the robot for symmetry purposes.  

The end-effector on the other hand contains three fingers 
and three joints (Fig. 3), two of which achieve the 
flexion/extension (joint 3) and pronation/supination (joint 5) 
maneuvers while the third achieves the opening/closing 
maneuvers of the three fingers (joint 4). The end-effector of 
the HMMR is designed as a self-contained entity of the robot 
as shown in Figure 3, where all motors, controllers, batteries 
and sensors are carried inside its structure. The three joints are 
actuated via brushless electrical motors operating at 20 Volt 
each, and enabling a peak torque of 20 N·m and a peak 
rotational speed of 75 deg/sec at the joint axes after two torque 
amplification stages consisting of planetary gears and worm 
gear assemblies that further ensure the non-back-drivability of 
the joints. Additional details of the structural features of the 
HMMR, as well as comparative analyses between the 

HMMR’s characteristics and other state-of-the-art mobile 
platforms can be found in [5] –  [8].  

 

 
Figure 2. A top view of the hardware layout of the HMMR with the tracks 

hidden 
 

 
Figure 3. The self-contained end-effector of the HMMR showing all three 

joints 

 

III. FIELD TESTING: CLIMBING AND DESCENDING 

OBSTACLES 

Two sample maneuvers executed by the HMMR are 
demonstrated in Figures 4 and 5. These maneuvers consist of 
climbing and descending an obstacle whose height is much 
taller than the folded height of the robot. To achieve this, the 
robot uses its arm to leverage the symmetric tracked platform 
over the obstacle during climbing, or to support the platform 
during obstacle descending. 

A. Obstacle Climbing 

The process of obstacle climbing begins by positioning the 
robot in front of the obstacle (Fig. 4-a). The location of the 
robot is adjusted depending upon the height of the obstacle. A 
tall obstacle requires the robot to be positioned at the close 
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proximity of the obstacle’s edge plane, while a shorter obstacle 
enables more positioning freedom. In any case, the second step 
in the process involves the rotation of the tracked units around 
joint 1 while maintaining contact between link 2 and the 
ground. This prevents the rotation of link 2 and causes the 
tracked units to rotate instead (Fig. 4-b), and this rotation is 
maintained until contact with the obstacle’s edge is achieved 
(Fig. 4-c). The obstacle is assumed to be unyielding and stable 
enough to not slide away under the induced load of the robot 
(which is the case of many architectural obstacles found in the 
real-world). In this position, the stability of the platform is 
achieved by maintaining contact with the ground through link 
2, and with the obstacle through the tracked units (Fig. 4-c).     

 
Figure 4. A sequence of maneuvers executed by the HMMR to climb an 

obstacle in a concession of processes using the manipulator arm as leverage 

 
In this posture, the continued actuation of joint 1 causes 

the tracked base to rotate even further until the tracks lie flat on 
the top surface of the obstacle (Fig. 4-d). This provides enough 
traction for the tracks to move forward over the obstacle’s top 
surface while link 2 maintains rigid contact and stable balance 
with the ground through the passive wheels (Fig. 4-e).  The 
relevance of the passive wheels located on the shaft of joint 2 
can be noted in this process, where they roll freely on the 
ground driven indirectly by the forward motion of the tracks to 
reduce the friction between link 2 and the ground. Once the 
tracked platform is stably positioned on top of the obstacle, the 
process of rotating link 2 back inside the tracks can be initiated 
(Fig. 4-f). We note that link 3 does not contribute to the 
sequences required to accomplish this maneuver as joint 2 
remains idle during the climbing process. 

B. Obstacle Descending 

For any robot with obstacle climbing capabilities, the 
process of overcoming an obstacle should be reversible; 
meaning that the robot should be able to descend the obstacle 
in a rather similar but reversed sequence of maneuvers as in 
the ascending process. For the HMMR, this is accomplished 
by deploying the arm to support the tracked platform during 
the descending process, as highlighted in the case-study 
scenario of the robot descending a table shown in Fig. 5.  

This process starts by positioning the robot at the 
obstacle’s edge (Fig. 5-a). Link 2 of the manipulator arm is 
then rotated around joint 1 until contact with the ground is 
achieved through the passive wheels located on the shaft of 
joint 2 (Fig. 5-b). The tracked units are actuated forward 
thereafter until they clear the edge of the obstacle, using the 
arm and the passive wheels on the ground for balance and 
support (Fig. 5-c). 

 
Figure 5. A sequence of maneuvers executed by the HMMR to descend an 
obstacle in a concession of processes using the manipulator arm as support 

 
In this posture, the actuation of joint 1 allows the tracked 

units to rotate downwards about the joint, while link 2 
continues to move forward using the passive wheels as a rolling 
support (Fig. 5-d). During this descending maneuver, balance is 
ensured through the wheels and the tracks maintaining contact 
with the obstacle’s edge. The forward motion of the passive 
wheels, and subsequently the arm, enables the tracked units to 
collapse downwards until contact between the tracks and the 
ground is established (Fig. 5-d). In this position, link 2 of the 
arm is completely parallel to the ground. This means that the 
actuation of joint 1 starting from this posture will enable the 
tracked units to rotate away from the obstacle’s edge and 
towards the arm which maintains balance during this maneuver 
(Fig. 5-e). The actuation of joint 2 is maintained until the tracks 
are leveled with the ground (Fig. 5-f).  

IV. MANIPULATION: KINEMATICS AND REDUNANCY 

RESOLUTION 

To analyze the kinematics of the HMMR’s arm, we first 
present a schematic of its geometry in Figure 6, which shows 
the dimensions and the degrees of freedom of the arm. The 
geometric and structural characteristics of the robot are as 
summarized in Table 1, where we refer to the end-effector as 
Link 3, and where Θi denotes the angle of joint i measured with 
respect to the x-axis. li denotes the length of link i and lci 
denotes the location of the center of mass of link i measured 
with respect to joint i. 
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TABLE I. MASS AND GEOMETRIC CHARACTERISTICS OF THE 
HMMR'S ARM AND BASE 

 

Link Mass M (kg) 
Link Length l 

(mm) 
Center of Mass 
distance lc (mm) 

Base (0) 38.69 630 274 
1 5.05 630 326 
2 5.82 513 273 
3 2.11 194.6 40.2 
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Figure 6. A schematic of the HMMR showing geometrical characteristics and 

degrees of freedom 

 

With these structural characteristics, the tilting moment that 
the arm’s static weight generates around the base pivot is 
written in a conservative form in terms of the arm’s geometry 
and degrees of freedom as follows 

 
1

1 1 1

( ) cos( ) ( ) cos( )
n n n

i ci i k i i
i i k i

M l M l


   

         (1) 

 
where η(Θ) denotes the tilting moment and n denotes the 
number of joints. For n=3, equation (1) can be further 
simplified into an expression with a single factored-out 
summation term as 

 
2 3

3 3 3
1 1

( ) ( ) cos( ) cos( )i ci k i i c
i k i

M l M l M l
  


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 
    (2) 

 
The forward kinematics of the end-effector position in the 

X-Y plane denoted by coordinates Px and Py can also be written 
in a conservative form in terms of the joint angles as follows 

 
3

1

3

1

cos( )

sin( )

x i i
i

y i i
i

P l

P l





 

 


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                          (3) 

 
From equation (3), it is obvious that the end-effector 

position in the planar workspace is a function of three joint 
variables. This generates a kinematic redundancy of order 1, 
and prevents a closed form solution of the inverse kinematic 
problem for autonomous end-effector placement maneuvers. 

To resolve this redundancy, we convert equations (2) and (3) 
into a minimization problem where the objective is to minimize 
the effect of the tilting moment subject to the forward 
kinematics, which are now regarded as equality constraints. 
This problem can be formulated mathematically as follows 

 

3

1
1

3

2
1

( )

( ) cos( ) 0

( ) sin( ) 0

x i i
i

y i i
i

Min

h P l
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h P l
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


    

    





 (4) 

 
Resolving kinematic redundancy can traditionally be done 

using methods such as the pseudo-inverse [10], extended 
Jacobian [11], [12] and matrix decomposition [13]. Although 
the efficacy of such methods is well proven, their solution is 
often characterized by the locality of the optimum as opposed 
to globality. However, when the objective is to maintain the 
dynamic balance of the mobile base during manipulation, 
finding the global optimum of the cost function becomes 
critical since the difference between the locality and globality 
of the solution could mean the difference between whether the 
robot maintains stability during manipulation maneuvers, or 
whether the arm’s posture and the longitudinal eccentricity of 
the external load cause the robot to lose balance and tip-over. 

In this line of thought, we opt at resolving problem (4) as 
an explicit global minimization problem where we first append 
the equality constraints h(Θ) to the cost function η(Θ) using 
Lagrange multipliers λ 

 
( ) ( ) ( )TL h       (5) 

  
and then solve the simultaneous system of non-linear 
equations resulting from the first derivative, 0L   
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using a numerical method. This method is developed using a 
Newton step where the first-order Taylor series expansion of 
L(Θ) in (5) given by 

1( ) ( ) k

k k k

q
L q L q L q

q
 
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

 (7) 

 
generates a gradient descent indexed by k with 1( ) 0kL q   , 
of the size 

1 1
kk

k k

qq
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and 
2

2

( )L
H

q

 


  

representing the Hessian matrix of (5).  

Finding the global solution of (6) using the iterative step of 
(8) is achieved by searching the configuration space 
incrementally (10° increment) for all local minima and 
retrieving the absolute minimum of them. While this could be 
a relatively slow process for on-line sensor-based applications, 
it is possible to accelerate the convergence rate of this solution 
by exploring the unique characteristics of the system of 
equations presented in (6). By limiting the search space to the 
practical configuration space of the arm defined by  

 

1

3

0 151

90 90

   
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 (10) 

 
where Θ2 is indirectly bounded by (10); it is possible to start 
the iterative solution of (6) near an optimum by deriving 
analytical expressions for the initial guess of λ1 and λ2 from the 
first and third equations in matrix 0L  in (6) using an 
initial guess of Θ1

init and  Θ3
init in the search space of (10). 

These expressions are as follows 
 

1

2
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init

ce bf

ae bd
cd af

ae bd














 (11) 

with  
 

a = l1sin(Θ1
init); b= l1cos(Θ1

init);  

c= (M1lc1+M2l1+M3l1) sin(Θ1
init); 

d= l3sin(Θ3
init); e=l3cos(Θ3

init); f= M3lc3 sin(Θ3
init) 

Furthermore, using (11), it is also possible to derive an 
additional analytical expression for the initial guess of Θ2 from 
the second equation in matrix 0L  in (6). This equation can 
be written as 
 

1 2 2
2

1 2 2 2 3 2

tan
init

init
init

c

l

l M l M l




     
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 (12) 

The advantage of initializing the search algorithm with 
(11) and (12) is reflected in Figure 7. In this figure, we 
compare the number of iterations prior to local convergence 
for 100 attempts initialized using random guesses of λ and Θ2 , 
to the number of iterations prior to local convergence with an 
initial estimate of λ and Θ2 made according to (11) and (12), 
respectively. In all 100 cases, the initial start for Θ1 and Θ3 
was maintained. As can be seen in this figure, the choice of λ 
and Θ2 according to (11) and (12) generates a faster local 
convergence in 98% of the cases. This accelerates the search 
across the configuration space for the global minimization of 
(5), and enables us to employ the gradient-based algorithm to 
explore the adaptive manipulation capabilities of the HMMR 
in real-time sensor-based applications. 
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Figure 7. Number of iterations required prior to convergence for a random 

choice of λ and Θ2, vs. a choice of λ and Θ2 made according to (11) and (12), 
respectively 

 

V. ADAPTIVE MANIPULATION 

In the previous discussion, the objective of the 
minimization algorithm was to resolve the kinematic 
redundancy of the arm for a desired end-effector task, and 
generate a posture that maximizes the payload capacity of the 
manipulator by minimizing the tilting moment the arm’s 
weight generates around the base pivot. In practical 
applications, the minimization problem must also account for 
the weight of the object at the end-effector and its contribution 
to the tilting moment and the stability of the robot. 

Measuring the weight of the object carried by the arm can 
be done using a force sensor incorporated at the end-effector’s 
fingers. In a gravity-governed environment, the external load 
induced by the weight of the object increases progressively 
from zero when the object is completely on the ground until 
load saturation when the object is fully carried by the arm. 
This behavior is shown in Figure 8 where a progression of 
manipulation maneuvers is matched with the corresponding 
progressive object load induced onto the arm at the end-
effector. By converting this continuous progression into a 
discrete sequence of sensor readings at instances m, it is 
possible to trigger the minimization algorithm to reposition the 
robot with respect to the object in order to minimize the 
eccentricity of the external load, and accordingly, recalculate a 
new joint posture that maximizes the arm’s payload capacity. 

Triggering the algorithm to reposition the robot with respect 
to the object is achieved anytime the condition 

 

0 0 ( ) xM lc FP      (13) 

 
is violated. In (13), M0 denotes the mass of the base, lc0 

denotes the location of the base center of mass with respect to 
the pivot and ( )F F m  represents the measured instance of 

the external load. δη is added as a safety margin to the 
stabilizing moment (δη =2 N·m in this application). 
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Figure 8. A progression of manipulation sequences with corresponding 

increase of the external load on the arm 
 
Every time equation (13) is violated, a new value X(m) is 

calculated based on 
0 0( ) ( )

( )
( )

cM l
X m

F m

   
  (14) 

 

and the algorithm automatically moves the base closer towards 
the object by  X(m-1) – X(m) and recalculates a new posture of 
the arm based on the minimization problem of  (4). This 
procedure is simulated in Figure 9 for a 15 Kg payload located 
at Px= 0.9 m and Py= 0.4 m.  
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Figure 9. Simulation of the forward movement of the arm (A) and the 

corresponding joint history after reconfiguration (B). 

In Figure 9-A, the base is originally located between 
coordinates 0.63m and 0m, and condition (13) is first violated 
at F=4.5Kg. Thereafter, Figure 9-A shows the forward 
movement of the arm under incremental instances of external 
loading, while Figure 9-B shows the joint history of the arm’s 
reconfiguration as a result of the forward movement. 
 

VI. CONCLUSION 

This paper presented the field testing results and adaptive 
manipulation of a hybrid mechanism mobile robot (HMMR). 
The algorithm discussed in the paper maximizes the payload 
capacity of the arm and enables the robot to reposition the 
mobile base to avoid tipping over under excessive external 
loading. In the future work, we will validate the effectiveness 
of the algorithm in a closed loop control scheme involving the 
force sensor at the end-effector and the mobile base actuators. 
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