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ABSTRACT 
Nature provides various alternative locomotion strategies which 
could be applied to robotic systems. One such strategy is that of 
jumping, which enables centimeter to millimeter-scaled insects to 
traverse highly unstructured environments quickly and efficiently. 
These insects generate the required high magnitude power 
through specialized structures which store and rapidly release 
large amounts of energy. This paper presents an investigation into 
the morphology of natural jumpers and derives a generalized 
mathematical model based on them. The model describes 
mathematically the relationships present in a jumping system 
which uses a pause-and-leap jumping strategy. The use of springs 
as energy storage elements for such a jumping system is assessed. 
The discussion is then further extended to another bioinspired 
approach that can be applied to a jumping robot: that of gliding 
using foldable wings. The developed jumping and gliding mobility 
paradigm is analyzed and its feasibility for mobile robot 
applications is discussed.   

INTRODUCTION 
Robots are presently being developed for many tasks in 

rugged environments, including search and rescue, exploration, 
surveillance, and mobile sensor network setup. This requires the 
development of robotic systems that possess versatile locomotion 
mechanisms in order to traverse rough and unstructured 
environments.  

Typically this is achieved through the use of wheels, tracks, 
or legs. However there are limitations to the abilities that these 
locomotion mechanisms possess. For instance the obstacle 
traversing ability of a wheeled robot is restricted to 1.5 times the 

wheels’ diameter [1]. Tracked robots are commonly deployed in 
rugged terrain operations, but to surpass obstacles they require 
extensions to the chassis like articulated fins [2] or hybridized 
structures [3]. Still, the height of the obstacle that they can 
overcome is limited. Similarly the predominantly experimental 
legged robots face problems in unstructured environments, with 
prototypes either limited to smoother terrains [4], or moving too 
slowly to be viable solutions [5]. There is also unresolved control 
complexities associated with the stability of legged robots, 
although designs like the Big Dog [6] and the rHex [7] are 
promising legged prototypes for rough terrain travel. 

The need for alternative locomotion strategies has led many 
researchers to look to nature for inspiration. Various innovative 
designs have been based on concepts found in nature. One such 
concept is that of jumping, which is used by many animals and 
insects as a mechanism for rapid locomotion. We will focus on 
insects that jump, since they most effectively utilize jumping to 
compensate for their small size while negotiating highly 
unstructured terrain.  

Some notable high jumping insects are the locust, 
grasshopper, flea, and froghopper. These creatures are able to 
achieve remarkable jumping performance through the 
development of specialized hind legs and energy storage 
elements. The hind legs in most jumping insects are longer to 
provide extra leverage and extended acceleration duration [8]. In 
addition, these insects have developed energy store-and-release 
mechanisms, which, though different in morphology, serve the 
same purpose. These will be discussed in more detail in the 
following section. 
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Much research has been performed on jumping insect kinematics 
[9-11]. Models and robots have been built that employ the same 
principles. For example, Kovac et al. [12] built a 7 gram robot 
based on the performance of the grasshopper which is able to 
achieve jumps of up to 27 times its body height. The “Grillo” 
robot, based loosely on the principles of the froghopper, can move 
with a forward velocity of 1.5 ms-1[13].  

In this paper we will highlight some of the key issues that 
influence jumping performance. To this end, we will first develop 
a generalized mathematical model based on a self-energizing 
ballistic jumper. The model developed will be generic in the sense 
that it can be applied to many jumping systems, but it will be 
fundamentally based on legged jumping morphology. We will 
then introduce non-dimensional parameters which can be used to 
study key relationships in the model to establish important design 
considerations. Further, since the primary purpose of this study is 
as a step towards designing robotic systems based on nature, we 
will analyze the applicability of two different energy storage 
mechanisms on jumping performance. Finally, we will discuss a 
specialized case also based on nature: gliding, as is used by bats 
and birds, as an extension of ballistic jumping. The benefits, 
drawbacks, and feasibility of the combined jumping gliding 
mobility paradigm will be discussed.  

JUMPING LOCOMOTION IN NATURE 
As a precursor for model development, we first studied 

various jumping methodologies as they are employed in nature. 
Most of the natural jumping mechanisms vary with respect to the 
specific nature with which the thrust force is imparted to the 
ground, but the basic principle is the same: energy is slowly 
stored in specialized structures and then rapidly released to 
provide the required acceleration. Some insects achieve this 
through abdominal movement, like the springtail [14], while 
others, like the stick insect, combine forward motion of the 
abdomen with movement of the legs [15].  

Of interest is the group of insects that propel themselves 
using a simultaneous movement of their specialized hind legs. 
This motion lends itself well to kinematic analysis as well as 
mechanical replication. The mechanism of propulsion and the 

specific muscle or structure where energy is stored may differ. For 
example, fleas use the trochanteral depressor muscles [16], while 
locusts and bush crickets use tibia extensor muscles [17]. Usually 
the hind legs are elongated in jumping insects, providing a longer 
moment arm and extended acceleration times to increase jumping 
performance. This can be observed in Bush crickets, which use 
direct muscle contractions to power very long legs. In 
comparison, fleas use a catapult mechanism in which a slow 
contraction of the muscles provides energy, which is stored in the 
skeleton and then suddenly released, providing a very high power 
output [16]. Locusts use a combination of energy storage and 
specialized long hind legs to power the jump [17].  

Finally, froghoppers, which are a recently discovered class of 
insects, use a mechanism akin to a crossbow to shoot their hind 
legs into the ground [18], as shown in Figure 1. They are able to 
achieve accelerations of up to 5400 ms-2, reaching heights of 
700mm [8], making them the best jumpers in nature. The hind 
legs in this case are roughly half the length of the body, 
significantly shorter than other insects like the grasshopper and 
locust. Additionally, the mass of the hind legs in the froghopper is 
2% of the body mass, an extremely low quantity as compared to 
other jumping insects. The importance of this will be discussed in 
the coming sections.  

Key Principles 
Much research has been performed on the jumping 

performance of grasshoppers, froghoppers, fleas, and locusts for 
robotic design [12, 13, 19, 20]. The requirements for successful 
self-propelled jumping locomotion can be summarized as:  

a) A reduction in the mass of the hind legs versus the body 
b) Increase in the energy storage capacity of the elastic element 
c) Reduction in friction and drag forces 
d) Symmetrical design and synchronized hind leg movement 

In nature, (a) can readily be observed. The previously 
described insects have hind legs which are a fraction of the mass 
of the rest of the body. (b) is the result of the specialized 
mechanism which allows energy storage, so that the power output 
is increased significantly. Series-elastic actuators use the same 
principle of using an artificial muscle with a motor, although to a 
lesser degree of energy storage [21]. Air friction and drag forces 
are reduced by selecting a body shape which has minimal cross-
sectional area with respect to the direction of travel. If the design 
is symmetrical and the hind legs motion is synchronous the 
system exhibits a controlled force profile on the ground, allowing 
a more stable jump to be performed.  

MATHEMATICAL JUMPING MODEL 
High jumping insects perform a jump through two general 

steps, which are:  

(i) Slow charging of the energy storage mechanism. This could 
be through a compression of the thigh muscles for mammals, 
or the combined effects of flexion and extension to charge 
the semi-lunar process as in locusts [22] 

FIGURE 1: THE MOTION OF THE HIND LEGS DURING 
JUMPING FOR A FROGHOPPER [13] 
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(ii) Energy release. This is usually performed at a highly 
accelerated rate and provides the necessary kinetic energy to 
lift the body off the ground.  

Many different design embodiments can be realized with 
respect to the method of energy release, the mechanism by which 
the released energy is transferred to the ground, and the number 
of active degrees of freedom in the leg. Each of these enhances 
the accuracy of the derived model, but also increases its 
complexity. However the jumping model is designed, the basic 
principle of slow-charging and quick releasing of an energy 
storage mechanism remains consistent. In previous works, 
Alexander [23] presented a two-legged model which he used to 
analyze the jumping performance and characteristics of various 
animals and insects. A simple two-mass model has been presented 
in [24, 25] as well.  

The model presented here is based loosely on the jumping 
principles exhibited by the froghopper’s hind legs, as shown in 
Figure 1. The legs are connected at the hip and foot by frictionless 
pin joints, effectively creating a four-bar mechanism. This will 
allow the analysis to be extended to cases involving mechanical 
energy storage elements such as springs. Since we are concerned 
only with developing relationships between jumping performance 
parameters, we use a two-dimensional model and consider 
vertical jumping. The model can readily be expanded to a three 
dimensional case by introducing an orientation angle, but for the 
purposes of our analysis, a 2-D model suffices.  

Figure 2 shows three stages of jumping prior to takeoff from 
the ground. The terms in Figure 2 are as follows:  

- g is gravity (ms-2) 
- Fact is the force of actuation (N), which is a conceptual force 

that is converted to stored energy.  In a biological system, 
this would be force applied by the muscles, while in an 
artificial system this would be the torque provided by the 
motor over the moment arm to charge the spring.  

- mb, ml and M are the masses (kg) of the body, the legs, and 
the total mass respectively. In our model, the mass of the legs 
and the foot are considered as one, as described by [24]. 

- Fmax is the maximum force exerted to provide maximum 
energy to the elastic element.  

- Fjump is the thrust force that the actuator produces to power 
the jump, propelling the jumper vertically at an initial 
velocity vjump. 

- l (m) is the length of each of the links of the mechanism 
- y1 and y2 (m) correspond to the minimum and maximum 

heights of the center of mass of the body, which is assumed 
to lie within the same horizontal line as the hip joint [8].  

- yext, or lext, is the distance that the center of mass accelerates, 
from the initial release of the stored energy up until the foot 
is about to leave the ground, and is given as:  
 

                  2 1
2 2

2 sin siny lext
    
   
   

  
 

                  (1) 

Using a non-dimensional system analysis technique, as 
previously proposed in [24] and [26], the system can be described 
as follows:  

                   ,( , , , , , )maxf m m m l h F gact extb l                (2) 

Each of these seven variables is a function of at most three 
basic parameters, which are mass [M], length [L], and time [T].  

According to the Buckingham-Π Theorem [27], there exist 
four non-dimensional variables which describe the system. These 
can be found by setting  

, , , , ,max
p ql m n o rm m l h F g non dimensionalextb l M        (3) 

Through an analytical approach [24, 26], the relationships 
between the parameters described above can be evaluated, 
resulting in the following non-dimensional parameters: 

                max
pl m q

m m h Fb l
l gextM M M

      
      

      
           (4) 

Where M is the total mass of the system. We select the 
following parameters to describe the system, as previously 
discussed in [24]:  

                                    maxˆ h
H

lext
                                   (5) 

                                      ˆ
mbM
ml

                                     (6) 

                                   ˆ jumpF
F

gM
                                   (7) 

These are dimensionless yet physically meaningful 

parameters for system evaluation. Ĥ gives a ratio between the 

FIGURE 2: THREE STAGES OF THE JUMPING ROBOT 
MODEL 
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maximum height the robot can jump versus the leg extension, 

therefore one design criteria is to maximize Ĥ . M̂ relates the 
body mass to the leg mass, and directly influences the efficiency 

of the system. F̂ is the force provided for the jump versus the 
weight of the robot.   

In order to find relationships between these parameters, we 
perform an energy study on the system. Air resistance effects are 
modeled as a loss of maximum height, such that hmax=αhideal, 
where 0<α<1. Then,  

                               2
max

1

2 jumpgh v                              (8) 

Similarly, considering the system in the pre-launch stage, 
(Fig 2 c.), the following equation can be readily obtained:  

                         

2

2

accb
jump b

m v
F m g

yext
                       (9) 

Here, vjump is the velocity of the system after loss of ground 
contact, while vacc is the instantaneous velocity of the upper mass 
immediately before loss of ground contact. Conservation of 
momentum results in the following equation: 

                                 ( )b acc b l jumpm v m m v                     (10) 

This results in:  

                                 v vaccjump                              (11) 

                                     
ˆ

ˆ 1

M

M
 


                                (12) 

 is a conversion efficiency factor [25] that is dependent on 

the variation in mass between the body and the leg. It is an 
important design consideration to have this factor as close to unity 
as possible by constructing the legs as a fraction of the mass of 
the body, so that energy losses are minimized. As previously 
stated, this principle is readily observed in nature.  

Equations (9), (11), and (12) combine to give:  

          
ˆ ˆ2 ( ( 1) )

ˆ
jumpy F M MMgext

vacc
MM

 
             (13) 

Through an energy balance on the system, where friction due to 
drag has been modeled as a reduction in the maximum height, 
(13) can be combined with (8) to give a relationship between the 
normalized height, the thrust forces, and the mass, as [25]:  

                

2

2

ˆ ˆ( )
ˆ

ˆ( 1)

Fjump jumpF Mg M M
H

Mg M





              (14)  

Combining (14) and the dimensionless parameter given in 
(7), we get a non-dimensional equation given by:  

                             
2ˆ

ˆ H
F






                               (15) 

Where  was previously defined in (12). This equation 

describes the force at takeoff, normalized over the body weight, 
versus the relative jump height and the mass distribution in the 
jumper.  

Equation (15) provides an important relationship between 
previously defined normalized parameters. This equation, 
combined with (14), gives a means to analytically determine the 
relationships between the parameters involved in jumping. The 
non-dimensional nature of the formulation ensures its 
applicability to any jumping system.  

       For the purposes of analysis, we select the parameters 

as ˆ 200F  , and the jump height Ĥ = 50. Then through the 
application of the derived equations, graphical relations can be 
generated using numerical analysis software, which are shown in 
Figure 3 and Figure 4. It can be seen that for a fixed mass and 
takeoff force, the velocity to which the upper mass accelerates 

decreases exponentially as the fraction M̂ increases.   follows 

an opposite trend, showing an increase as M̂ increases. Similarly, 
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FIGURE 3: THE EFFECT OF M̂ ON   AND vacc 
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it can be seen in Figure 3 that as   varies from 0.5 to 0.9, 

Ĥ increases linearly for constant system energy. The F̂ required 

to cause the jump decreases for increasing , which shows the 

importance of keeping  as large as possible.  

 
Case Study 

Since the primary purpose of this study was as a step towards 
design of a robotic jumping system based on biological principles, 
the jumping model was analyzed under two specific mechanical 
energy storage cases: linear and torsion springs applied to the 
knee joint. Springs are a robust, light weight, and effective means 
of energy storage. They are especially suited to the slow-charging 
and rapid release of energy, which is a requirement for effective 
jumping. They are a consistently used energy storage mechanism 
for jumping machines [12, 13]. 

The analysis considers the springs to be fully charged to 
energy E0, followed by the subsequent discharging phase which is 
developed for two cases, as shown in Figure 2.  

Linear Spring. Figure 5(a) shows the developed four-bar 
mechanism with a linear spring attached through the knee joints. 
A similar mechanism has been described previously to model frog 
jump kinematics [28]. In this case, the force Fy developed by the 
spring can be derived using the principle of virtual work [1]: 

                                 F dx F dyx y                                 (16) 

                               ( )0F k x lx                                 (17) 

Where l0 is the length of the spring at rest. For our case,  

                              
2

2
22 xy l  

 
 

                               (18) 

                             
2

22
2

x l
y

 
 
 
 

                               (19) 

Rearranging (16) and evaluating,  

                         
 
 

2 2 2 0

2 2 2

ky l y l
Fy

l y

 




                    (20) 

This can be written in terms of the angle   as:  

               
2

2 2 2

2
2

2 2sin sin cos

2 2 sin

kl l l l
Fy

l l

  



     
     
     

 
 
 

 




   (21) 

 Where k is obtained by 

                          
1 2 2( )max0 02

E k l l                        (22) 

Torsion Spring. In this case, helical torsion springs of 
stiffness k are wound around the knee joints. According to the 
principle of virtual work:    

                                       yTd F dy                            (23) 

Where the torque T provided by the spring is given as:  

                                          T k                                (24) 

From the law of cosines, the height of the upper joint is 
given as:  

                                2(1 cosy l                              (25) 

Then Fy is obtained by solving (23) using (25), resulting in:  

                                      
2(1 cos

siny

k
F

l

 



                 (26) 

The spring constant k can be calculated using the initial 
energy of the system, E0, such that 

      2 2
0 2 1

1
( )

2
E k                          (27) 

Where E0 is determined through the required jumping height. 
As a simple study to show the characteristics of the force profiles 
for both linear and torsion spring, we assumed the system mass 
and dimensions based on those of a locust [22] as: m=0.0015kg, 
h=0.5m, l=0.01m. Then, E0 is 7.4mJ. Assuming the mechanism 
has a maximum and minimum angle of  2 = 150 deg and  1 = 15 
deg, then equations (21) and (26) give the variation of the force 
profile with changing angle. This is shown in Figure 6.  

It can be seen that the linear spring in this arrangement has a 
nonlinear force profile, peaking once before dropping. It has been 
argued that this is a desirable characteristic as it reduces the risk 
of premature takeoff [1]. In contrast, the torsion spring exhibits a 
continuously increasing thrust force which has a greater 
magnitude that the linear spring.  

FIGURE 5: ENERGY STORAGE DESIGNS USING 
SPRINGS 
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In terms of effectiveness given the same amount of initial 
energy, the torsion spring provides a higher thrust force on the 
ground. However, the magnitude of the force increases towards 
the end of the unloading cycle for the torsion spring, at which 
time the foot may have already lost contact with the ground, 
resulting in substantial energy losses.  

In an ideal case, the torsion spring performs better than the 
linear spring for this mechanism, although the issue of premature 
takeoff from the ground needs to be further investigated for both 
types of spring. Ground takeoff occurs when the upward force 
provided by the spring completely counteracts the mass of the 
system, and for optimum design it is essential that acceleration 
duration is maximized. This can be achieved through material and 
spring selection that ensures ground takeoff occurs towards the 
end of the spring unloading cycle.  

 
JUMPING AND GLIDING MOTION 

This section provides an analysis for a new method of 
locomotion – jumping followed by gliding motion. In theory, this 
can be achieved by employing foldable wings to a jumping robot. 
The wings will remain folded during the initial phase of the jump, 
so that it can be modeled as an unpowered projectile. Once it 
reaches an optimum height and velocity, it will launch the gliding 
mechanism to take advantage of the introduced lift forces and 
perform unpowered steady state gliding flight [29].  

The theoretical benefits of such a motion are to increase the 
horizontal distance traveled, increase in-flight control of the 
trajectory of the robot, and decrease potentially catastrophic 
impact forces upon landing. Figure 7 shows a conceptual rigid 
body ballistic trajectory.  

The terms in the figure are defined as follows:  
‐ v0 : takeoff velocity (ms-1) 
‐ α0 : initial takeoff angle (degrees) 
‐ ymax : the maximum height attained by the projectile, 

dependent on the ballistic flight trajectory (m) 
‐ xg, yg, tg : the respective distance and time at which the 

gliding mechanism will be released (m, s) 
‐ xmax: the maximum range covered by the given system.  

Taking into account drag and lift forces as they apply to any 
rigid body following a ballistic trajectory, we can derive the 
following governing equations:  

              cos( ( )) sin( ( ))mx f t f td l                      (28) 

        sin( ( )) cos( ( ))my f t f t mgd l                    (29) 

The drag force fd and the lift force fl are given as:  

                      
2 2 2( ( ) ( ) )f Dv D x t y td                        (30) 

                            2 2 2( ( ) ( ) )f Lv L x t y tl                         (31) 

Where, 

                                        
1

2
D A cd d                               (32) 

                                       
1

2
L A cf l l                                (33) 

This gives the horizontal and vertical acceleration in terms of 
the drag, lift and inertial forces. A constraint on lateral motion 
imposes the relation:  

                          
( )

( ) arctan
( )

y t
t

x t
 

 
 
 




                           (34) 

The terms above are defined as follows:  

‐  = air density, 

‐ Ad = Drag area, normally considered as the area 
perpendicular to the direction of travel, 

‐ cd = Drag coefficient,  
‐ Al = Lift area, taken as the wingspan  
‐ cl  = Lift coefficent.  
For simple flow conditions and geometries and low 

inclinations, the coefficient of lift can be approximated using the 
following equation [30]:  

                                     2cl                                     (35)  

FIGURE 7: JUMPING-GLIDING MOTION SCHEMATIC
FIGURE 6: FORCE PROFILE VERSUS ANGLE FOR TWO 

SPRING CONFIGURATIONS 

           Linear Spring 
           Torsion Spring 

F
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N
) 
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where   is the angle of attack expressed in radians. The 
coefficient of drag depends on parameters such as the Reynold’s 
number, shape of the object, and air conditions [31]. Unpowered 
gliding motion for small UAV’s is modeled as low Reynold’s 
number flight [32].  

To model the deployable wing, we note that the wing folding 
mechanism will be released instantaneously. For this reason, the 
lift force has the following constraint:  

                                   
0,

,

L t tl

L L t tf l

 

 
                             (36) 

If the friction forces on the model are simplified to include a 
cost function cf which acts as a reduction factor on the total 
energy, then the energy available on the system will be cf 
multiplied by E. Then the maximum height that the body reaches, 
hmax, is given as: 

                           2sin( )max 0h c Ef                         (37) 

Similarly, the velocity at this maximum height is horizontal, 
and is given by:  

                        
2

.cos( )0

c Ef
vtop

m jg
                       (38) 

We consider a simple case of a small jumping machine that 
weighs 10 grams, versus a jumping and gliding machine that 
weighs 15 grams. The energy released for the jump is assumed to 
be enough to raise both masses to the same height, with an 
assumed takeoff value of 6ms-1. This is in close comparison to the 
best performing jumping robot created to date [12]. Assume that 
the gliding mechanism is launched at the highest point of the 
trajectory, and that the area of the wingspan is 40x the 
longitudinal area of the glider. The launch angle is 75 degrees. 
Through an iterative numerical procedure, we find the variation in 
horizontal distance traveled for the ballistic jump versus the glide. 
This is shown graphically in figure 8. For this case the increase in 
distance traveled is 0.14m, resulting in a total increase in 
horizontal distance traveled of 14.5%.  

Future work in this regard will be in determining the cost of 
jumping and gliding with respect to initial energy available to the 
system, given the increase in mass. Further, we will analyze the 
size of the wingspan which can be designed given the mass and 
stored energy constraints. We will attempt to find various tradeoff 
parameters which will enable the systematic creation of a 
hopping-gliding system. This is a challenging problem because of 
the nonlinearity involved in the governing equations of ballistic 
jumping under the influence of drag and lift. Our final aim is to 
use aerodynamic principles to design a system which when 
launched will be able to autonomously deploy its foldable wings 
and perform steady state controlled gliding flight to the ground.  
 

CONCLUSIONS AND FUTURE WORK 
In this paper we presented an analysis of jumping motion 

using a non-dimensional analytical approach. We derived a legged 
jumping model based on froghopper jumping morphology. 
Important relationships between different parameters of the 
system and the effects they have on the jumping performance 
were highlighted. Additionally, the use of two different types of 
mechanical energy storage elements was discussed and their 
effectiveness analyzed. This paper presented some useful insights 
into the energetic of jumping locomotion. We then furthered our 
discussion to another bioinspired locomotion approach – ballistic 
jumping followed by flexible wing gliding. We found for a simple 
case that an increase in horizontal distance traveled of 14.5% was 
possible through the application of a gliding mechanism, 
assuming the energy costs associated with the extra weight are 
met. Our future work involves refining the model so that it is a 
more realistic depiction of jumping motion, which will allow the 
evaluation of different leg mechanisms. Effects of premature 
ground takeoff, system vibrations, and friction in the joints and 
the air will be incorporated into the analysis. We ultimately aim to 
develop a physical prototype which is capable of high powered 
jumping followed by ballistic gliding motion.  
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