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ABSTRACT 
This paper presents a generalized method of determining 

the static shape conformation of a continuum robot based on 
the principle of virtual work. A lumped parameter model is 
utilized to model a prototypical single-segment manipulator. 
Elastic effects, gravitational forces and actuation loading are 
modeled as generalized forces and moments acting along the 
manipulators at discrete masses. A brief derivation of the 
governing static equations based on the principle of virtual 
work is presented, and then applied to the problem of 
continuum manipulator statics. The numerical method was 
successfully implemented numerically, capable of determining 
a system’s static equilibrium given a prescribed actuation.  
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NOMENCLATURE 

F  Applied force (N) 

Fg  Gravitational force (N) 

Fax  Axial force (N) 

Fact  Actuation force (N) 

L  Segment length (m) 

0L  Undeformed segment length (m) 

M  Applied moment (N-m) 

Mb  Bending moment (N-m) 

Mact  Actuation moment (N-m) 

P  Generalized force (N or N-m) 

T  Local-to-global coordinate transformation (unitless) 

W  Virtual work (N-m) 
 

g Gravitational acceleration, (m/s2) 

k  Segment curvature (1/m) 
n Number of disks (unitless) 
p Disk position and orientation (m and rad) 

plcl  Local segment position and orientation (m and rad) 

0p  Initial disk position and orientation (m and rad) 
q Generalized coordinates (m or rad ) 

0q  Undeformed configuration (m or rad) 

q*  Single-segment generalized coordinate (m or rad) 

r Generalized displacements (m or rad) 

rh  Cable routing hole position (m) 

x , y   Linear displacement coordinates (m) 

δ  Linear displacement vector (m) 

θ  Angular displacement vector (rad) 

  In-plane angular rotation (rad) 
 Prescribed cable tension 
 
I.  INTRODUCTION 
 Continuum manipulation is an emerging field within 
robotics promising to address many shortcomings of 
conventional rigid-link manipulators. Benefits of continuum 
manipulation include their inherent compliance when handling 
delicate objects or interacting with people, the ease of whole-
arm manipulation using the entire length of the robotic arm to 
wrap around the payload, and the greater flexibility of the 
overall manipulator shape when navigating unstructured 
environments. However, compared to rigid-link robotics, the 
analytical work in the scientific literature on modeling of 
continuum manipulator shape is lacking.  

Previous work in modeling the time-invariant shape 
conformation of continuum manipulators has focused on 
kinematic and static models. Kinematic models ignore the 
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force-based effects present in the system and formulate 
relationships based on geometric quantities. In the case of a 
cable-driven manipulator, given a set of cable displacements, 
the resulting shape of the manipulator is found simply due to 
geometric constraint. Webster and Jones [1] provide an 
exhaustive review of constant-curvature based methods of 
modeling continuum manipulators, where actuated segments 
are assumed to exhibit a single constant curvature along its 
length. Alternatively, Chirikjian and Burdick [2] have presented 
a method in which manipulators are actuated to shape-fit 
prescribed Bessel function curves.  

Static models utilize a manipulator’s mechanics when 
determining its shape conformation; in the case of a cable-
driven manipulator, the cable tensions are considered as inputs. 
Relevant effects modeled may include elasticity, gravity, 
actuation force and gravity. Jones et al. [3] utilize Cosserat rod 
theory to represent the manipulator as a one-dimensional curve 
in space. Rucker et al. [4] minimized an energy function to 
determine the static equilibrium configuration of a continuum 
manipulator. Xu and Simaan [5] utilized elliptic integrals to 
model shape, allowing for an analytical solution to the partial 
differential equations defining the mechanics.  
 
Significance 

In this paper, a novel method of modeling continuum 
manipulator statics is derived using the principal of virtual 
work. The method is applied based on a novel method of 
representing the system as a serial chain of piecewise constant-
curvature continuum segments within a single actuated region. 
This geometry-based discretization better represents the 
manipulator structure for numerical calculation than an 
arbitrary mesh defined for the solution of a continuous 
formulation of mechanics (such as by ordinary differential 
equations). This work will enable further work in continuum 
manipulator statics (incorporating additional non-conservative 
forces such as friction as additional virtual work terms) and 
dynamics (using the method of virtual power/Kane’s method to 
model system dynamics). Benefits of this method in relation to 
current method of modeling include: (1) it is a static method 
that accounts for mechanical effects, unlike kinematic models; 
and (2) the model results in a series of coupled nonlinear 
equations, as opposed to a series of coupled ordinary 
differential equations to be meshed and solved. 
 
Outline 
 Section II provides background on the principle of virtual 
work and the manipulator structure under consider. Section III 
describes the virtual-work-based continuum manipulator static 
analysis. Section IV describes the numerical implementation of 
the method and presents the results. Section V draws 
conclusions from these results and describes future work 
associated with this research. 
 

II.  BACKGROUND 
In this section, the fundamentals of the principle of virtual 

work are presented, along with a description of the continuum 
manipulation segment under consideration. 
 
Principle of Virtual Work 
 The principle of virtual work arises as a fundamental result 
of variational calculus [6]. For a deformable system in static 
equilibrium, by comparing the static equilibrium configuration 
to a reference, undeformed configuration, a metric of virtual 
work W  may be constructed by summing the dot products of 

each generalized force Pj  acting on the system with the 

associated generalized displacement rj , shown in Eq. 1 (a 

generalized force may be a force or moment).  
 

P rj j
j

W    (1) 

 
 Based on the principle of least action, for a system in static 
equilibrium, W  is a minimum value. As a consequence, the 

first order variation of the work ( W ) is zero, as shown in 
Eq. 2. The system is characterized in its joint space by a set of 
generalized coordinates q . The variation in work must remain 

identically zero regardless of variation in generalized 
coordinate; this property enables construction of the constraint 
equations for static equilibrium.  
 

0P rj j
j

W     (2) 

 

 The variation in generalized displacement rj  may be 

related to the variation in generalized coordinates qi  by a 

first-order Jacobian mapping, shown in Eq. 3. Applying this 
mapping to Eq. 2 results in Eq. 4, in which the variation in 
virtual work is constructed as a weighted sum of the variations 
in generalized coordinates.  
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 In order for Eq. 4 to remain equal to zero regardless of the 
variation in generalized coordinate, the coefficients must equal 
zero, as shown in Eq. 5. These are the governing equations for 
the static equilibrium.  
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  (5) 

 
Continuum Manipulator Structure 
 In this paper, the mechanics of a cable-driven manipulator 
with an elastic core are considered. Figure 1 illustrates the 
typical structure of such a manipulator, based on an 
implementation by Rucker and Webster [7]. Rigid disks are 
mounted along an elastic core, and flexible cables transmit 
actuation along the length of the manipulator. A frictionless 
interaction is assumed along the length of the cable, resulting in 
a constant tension along the length of the cable. This 
assumption is common in the literature during early-stage 
investigations into continuum robot mechanics [7] and may be 
validated by selecting low friction materials for the disk and 
cable (such as Teflon-filled plastic and Teflon-coated thread). 
 

Elastic Core

Actuation Cables

Disk

 
FIGURE 1. CABLE-DRIVEN MANIPULATOR STRUCTURE 

 
When calculating the mass of each disk during the 

analysis, an effective mass accounting for both the disk and the 
elastic core will be formulated, due to the segment-based 
discretization of generalized coordinates used to model the 
system (discussed in Section 3). An alternative cable-driven 
structure is presented by McMahon et al. [8] with a variable-
pressure pneumatic core – with minor adaptations, this analysis 
is also applicable to that structure. 
 
III.  ANALYTICAL DERIVATION 
 In this section, the static governing equations for a planar 
cable-driven continuum manipulator are derived. The system 
parameterization into a finite set of generalized coordinates is 
presented, along with kinematic and static analyses. 
 
System Parameterization 
 The manipulator is discretized into a series of piecewise 
arcs of constant curvature. Each segment is parameterized by 
two generalized coordinates q* : segment curvature k  and 

segment length L . The generalized coordinates q  of the 

system may be found by concatenating these segment 
curvatures together for the n  disks of the system (Eq. 6). The 
initial undeformed configuration of the manipulator is given as 

0q . 
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(6) 

 
The dot product of the generalized forces and partial 

generalized displacements in Eq. 5 may be represented as the 
sum of two dot products for each disk j : (1) the dot product of 

the net force acting at each center of mass ( F j ) with the 

Jacobian mapping of the corresponding linear displacement at 

that center of mass ( δ j iq  ), and (2) the dot product of the 

net moment acting at each center of mass ( M j ) with the 

Jacobin mapping of the corresponding angular displacement of 

that center of mass( θ j iq  ), as shown in Eq. 7. 
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In this model, the net force at each disk F j  is composed 

of three terms: the gravitational loading Fg , j , the axial elastic 

force Fax , j  due to segment compression/extension and the 

actuation force Fact , j . The net moment at each disk M j  is 

composed of the elastic moment Mb, j  due to segment bending 

and the actuation moment Mact , j . Both are shown in Eq. 8. 

 

F F F F

M M M
g ax act

b act

,  
 

 (8) 

 
In order to analyze the actuation force/moment 

contributions and the displacement/coordinate Jacobian 
mapping, a kinematic analysis is required to determine the 
relative positions/orientations between the disks, and the global 
positions/orientations of the disks.  
 
System Kinematics 

For each disk i , three coordinates describe the 

position/orientation ( pi , Eq. 9): two orthogonal linear 

coordinates ix  and iy , and one angular coordinate i  

orthogonal to the plane of linear motion. The initial coordinates 
of each disk are also shown in Eq. 9: each consists of an x-
coordinate based on the disk number i , and zero y and z. 
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pi  may be calculated recursively, using the previous 

segment’s position 1pi  and the local position pi , lcl  due to the 

segment’s bending and extension/compression, as shown in Eq. 

10. A coordinate transformation 1Ti  is utilized to map the 

local coordinates relative to the disk 1i   frame to the global 

frame. In addition, an expression for the segment 1 position is 
required due to the use of backward recursion; because the 
previous frame for the disk 1 local coordinates is the global 
frame, no coordinate transformation is needed. 
 

1 1

1 1

p p T p

p p
i i i i , lcl

, lcl

  


 (10) 

 
A geometric argument may be used to formulate the 

coordinates of the segment endpoint based on the segment’s 
generalized coordinates. Figure 2 illustrates a single segment’s 
geometry and demonstrates the method in which the 

expressions for pi , lcl  (Eq. 11) were determined.  
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FIGURE 2. GEOMETRIC METHOD OF DETERMINING 

SEGMENT DISPLACEMENT COORDINATES 
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The coordinate transformation 1Ti  (Eq. 12) transforms 

the linear coordinate to account for the total rotation of the 
previous disk’s frame while maintaining the angular coordinate 
for addition to the previous angle. Though it appears similar to 
a rotation matrix, strictly speaking, it is not, as only two 
dimensions have been considered. 
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 (12) 

 

Based on the definition of pi  (Eq. 10), a generalized 

formula for p qi   may be found using the chain rule, as 

shown in Eq. 13. 
 

1
pp p T

p T
q q q q

i , lcli i
i , lcl


  

  
   

 (13) 

For 1i   a special case is needed, due to the recursive 
formulation. Equation 14 addresses this special case, in which 
the Jacobian mapping is simply found by taking the derivative 

of each row of 1p  by each generalized coordinate.  
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(14) 

 
With this definition, the recursive formulation may be 

propagated forward for 2i  . The second term in Eq. 13 
accounts for the spatial change in the system’s coordinate 
transformation and is calculated in Eq. 15, with the definition 

of k , jX  in Eq. 16.  
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1 2k , k ,
k , j i , lcl i , lcl

j j

T T
X x y

q q

 
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 (16) 

 
The definition of coordinate transformation derivatives are 

found in Eq. 17. The derivatives with respect to 1i   are 

calculated based on the previous definition’s analytical 

definition of 1 1 1i i ik L     
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(17) 

 

The derivatives with respect to the local position pi , lcl  are 

found in a similar manner to Eq. 14, but the location of the 
three-by-two submatrix varies based on the disk under 
consideration; Eq. 18 shows the formulation.  
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(18) 

 
System Statics 

Based on the kinematic analysis, three classes of static 
effects have been incorporated into this continuum manipulator 
model: gravitational, elastic and actuation. 

 
Gravitational Loading. Gravity is accounted for in the 

model by applying a constant force in the negative global y-
direction with magnitude of mg , as shown in Eq. 19. The 

planar motion simulated in this work is in the vertical plane. 
 

 0F
T

g mg   (19) 

 
Elastic Effects. Two types of elastic effects are 

considered in this model: bending and extension. Segment 
bending results a moment generated normal to bending. This 
moment is proportional to the change in segment curvature 

from the reference configuration 0k k . The constant of 

proportionality is xxE J , where E  is the elastic core’s Young’s 

modulus and xxJ  is the second moment of area of the elastic 

core’s cross section.  

Mb,i accounts for the moment loading on disk i  due to 

the segment(s) adjacent to that disk. For the first and 
intermediate disks on the manipulator, the loading will depend 
on the difference of the two segment’s curvatures. For the final 
disk the moment is simply proportional to the opposite of the 
segment’s bending moment, as shown in Eq. 20.  
 

 1M xx i i
b,i

xx n

E J k k i n

E J k i n
   

 
 (20) 

 
The compression or extension of the continuum core 

results in a force generated tangent to the core’s geometry at the 
disk(s) adjacent to the segment. This force is proportional to the 
change in segment length from the reference configuration 

0iL L . The constant of proportionality is 0EA L , where A  

is the continuum core’s cross sectional area.  

Fax ,i  accounts for the force loading on disk i  due to the 

segment(s) adjacent to that disk. As with segment bending, for 
the first and intermediate disks on the manipulator, the loading 
will depend on the difference of the two segment’s lengths. For 
the final disk, the force is equivalent to the segment’s 
compressive force, as shown in Eq. 21. 
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 (21) 

 
Actuation Loading. In order to determine the actuation 

loading, the lines of action of the cable’s tension along the 
manipulator is needed. This may be determined based on the 
relative positions of the cable routing holes. At the system base, 

the actuation cable “enters” the system at position 0rh,  relative 

to the system origin. The cable routing hole positions rh,i  for 

each disk relative to that disk’s center of mass (but represented 
in relative to the global coordinates) are found relative to the 

disk frame’s y unit-vector (  Ti iŷ sin cos   ). Both 

are shown in Eq. 22. 
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
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   
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Based on these hole positions, the position vectors from 

hole-to-hole ( ph,i , Eq. 23) may be constructed. For each 

segment i , the hole-to-hole position vector may be constructed 

by adding the segment’s local position vector pi  to the 

subsequent frame’s hole position vector rh,i  and subtracting the 

previous frame’s hole position vector 1rh,i . An initialization is 

not needed for this because of the initialization of 0rh, . 
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Because only the direction of this vector is required, the unit 

vector ph,i
ˆ  is calculated. 

 

1p p r r

p p p
h,i i h ,i h ,i

h ,i h ,i h ,i

,

ˆ
  


 (23) 

 

Based on these unit vectors, the net force Fact ,i  (Eq. 24) 

due to the actuation on the disk may be determined by 
subtracting the previous segment’s unit vector from the 
subsequent segment’s for each disk, then multiplying the 
resultant vector by the tension  . For the final disk, the force is 
simply the opposite of the previous segment’s unit vector  
 

 1p p
F

p

h,i h,i
act ,i

h,i

ˆ ˆ i n

ˆ i n




   

 
 (24) 

 
Using the net force acting at the hole position on each disk, 

the effective force and moment acting at the disk’s center of 
mass may be found. The equivalent force at the center of mass 
is equal to the original force, and the equivalent moment may 
be found by taking the cross product between the displacement 

between the two points of application ( rh,i ) and the force itself, 

as shown in Eq. 25. 
 

i,acti,hi,act FrM   (25) 

 
Using these three classes of forces/moments, the relevant 

first-order mechanical effects have been incorporated into the 
static model of the system. An illustrative three-segment 
manipulator analysis will be performed to demonstrate the 
calculation of variables.  
 
IV. NUMERICAL ANALYSIS 
 In this section, the static analysis of Section III is 
numerically implemented in MATLAB, and several case 

studies are provided to illustrate the utility of this method.  
 
Numerical Implementation 

MATLAB [9] was utilized to solve the set of coupled 
nonlinear equations presented in Eq. 5. A trust-region dogleg 
algorithm was chosen as a part of the ‘fsolve’ collection of 
algorithms. The solver iterated the generalized coordinates 
from an initial guess to minimize the magnitude of the 
constraint equations (Eq. 5). Due to the highly nonlinear nature 
of this system of equations, a set of generalized coordinate 
were not found to force the constraints to identically zero. 
However, in each case-study discussed below, the maximum 
error in constraint is on the order of ~10-9. 

The manipulator geometry and material properties utilized 
were inspired by a prototype used for statics validation in the 
literature [7], with the properties used in the following 
simulations defined in Table 1. In the case studies presented, a 
four-segment manipulator was utilized. 
 

TABLE 1. MANIPULATOR PROPERTIES 
Variable Value Variable Value 

n 4 m  7.782e-4 [kg] 

0L  0.02 [m] hr  0.008 [m] 

E 2.10e11 [Pa] A  5.027e-7 [m2] 

xxI  2.029e-8 [kg-m2] zzI  3.503e-8 [kg-m2] 

xxJ  2.011e-14 [m4] g  9.81 [m/s2] 

 
Numerical Results 

For the initial simulation, the tension of the cable was 
assumed to be zero, and the static equilibrium was found in the 
absence of actuation and illustrated in Figure 3. As a point of 
comparison and in order to validate this unactuated static 
equilibrium, a finite element model of the manipulator using 
COMSOL Multiphysics [10] was generated, and the resulting 
disk positions have been superimposed on Figure 3.  

The errors between these disk positions are presented in 
Table 2. The error is determined using the distances of each 
point from the global origin (the base of the manipulator), with 
the finite-element method calculation taken as the reference 
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FIGURE 3. STATIC EQUILIBRIUM WITHOUT ACTUATION
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(due to its higher fidelity). Based on these calculations, the 
virtual work model is a highly accurate representation of the 
manipulator statics, with a slight bias of the solution below the 
finite-element solution, with this bias increasing along the 
length of the manipulator. This is likely due to the method of 
applying the entire disk and surrounding segment mass at a 
single point along the manipulator in the virtual work, versus 
the distribution present in the finite element model. 
 

TABLE 2. EQUILIBRIUM DISK POSITIONS  

Disk Virtual-Work 
Method (m) 

Finite-Element 
Method (m) 

Percent 
Error 

1 (1.999e-2,  
-5.7854e-5) 

(1.9999e-2,  
-5.8970e-5) 

2.8268e-5 

2 (3.9999e-2,  
-2.0610e-4) 

(3.9999e-2,  
-2.0347e-4) 

3.6533e-5 

3 (5.9998e-2,  
-4.0136e-4) 

(5.9998e-2,  
-3.9055e-4) 

5.7060e-5 

4 (7.9997e-2,  
-6.1469e-4) 

(7.9997e-2,  
-5.9276e-4) 

6.9687e-5 

 
After this verification of the accuracy of the gravitational 

and elastic effects within the model, the effect of tensile 
loading was studied within the manipulator. Figure 4 shows 
simulations over a range of cable tensions from 0.05 N to 2 N. 
In the cases of 0.05 and 0.1 N, a slight sag is observed below 
the y = 0 axis; in these cases the cable tension is not sufficient 
to lift the manipulator above this horizontal datum. However, 
the force is observed affecting manipulator geometry with a 
slight upward lift of the terminal end of the manipulator at the 
cable attachment point. However, for tensions 0.5 N and 
greater, the force is sufficient to lift the manipulator above the 
horizontal datum, increasing curvature in all segments, with a 
greater increase seen in segments closest to the base.  
 
V.  CONCLUSION 
 In this paper, the statics of a cable-driven continuum 
manipulator have been derived. Elastic, gravitational and 
actuation effects have been incorporated in the model, and the 

model has been numerically implemented and demonstrated on 
two numerical case studies.  

Future research in this area will include three primary 
thrusts: (1) experimental validation of numerical results, (2) 
incorporation of higher-order effects in this model, and (3) 
development of models of continuum manipulator motion. 
Experimental validation will allow for the error within this 
model to be quantified relative to actual performance. 
Incorporation of higher-order effects will allow for more 
accurate models, and will enable modeling of manipulators 
with multiple actuated segments. Development of motion-based 
continuum manipulator models will build upon the virtual-
work-based approach presented in this paper to utilize a virtual-
power-based approach (Kane’s method) to simulate both quasi-
static and dynamic motion.  
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