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Abstract—In this paper, the stability of mobile robots during 
object manipulation with redundant arms is investigated. A 
new fast-converging MIMO control algorithm, called the 
Circles of INitialization (COIN), is introduced to calculate 
globally optimal postures of redundant manipulators. The 
algorithm is employed in real-time to prevent mobile robots 
tip-over during dynamic eccentric manipulation. This is 
achieved with tip-load measurement by adapting the position of 
the base relative to the line of action, and recalculating the 
global joint posture that offsets the risk of toppling. This 
closed-loop control scheme to maximize the arm’s payload and 
stabilize the robot’s posture is applied to serial redundant 
manipulators with n-joints. 

I. INTRODUCTION 

N MOBILE ROBOTIC manipulation applications, the 
mobile platform balance is determined by the tilting 

moment the arm’s weight, the inertial dynamics and the 
object’s weight generated around the base pivot, compared 
to the stabilizing moment the base weight generates around 
the same pivot. When the tilting moment exceeds the 
stabilizing moment, the robot tends to tip-over.  

In general, the problem of tip-over instability during 
object manipulation can be seen in two folds. On one hand, 
the robot needs to calculate a joint posture which enables the 
end-effector to reach the object, while minimizing the 
component of the tilting moment that the eccentric weight of 
the arm generates around the base pivot. On the other hand, 
the robot should also respond to external load disturbances 
that result in tip-over instability, such as the prompt increase 
in the tip load induced by the object on the arm, or the 
inertial dynamics resulting from the robot’s mobility. In this 
paper, we show that this adaptability can be achieved 
autonomously, by updating the robot’s position relative to 
the end-effector’s trajectory in order to offset the 
disturbance, and recalculating a new arm posture that 
maintains end-effector contact with the object.  

In the literature, the problem of tip-over instability for 
mobile robots is considered for applications where the 
vehicle is following a winding trajectory (e.g., navigating 
around obstacles), while transporting an object from one 
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place to another [1]–[6]. However, these methods, and 
others [7], [8], exhibit three limiting aspects: 

a)  Offline solution: where tip-over-free arm trajectories 
are planned a priori, thus discarding the constraint of 
convergence speed in real-time. 

b)  Lack of online adaptability: where the robot is unable 
to react to unpredictable disturbances that may occur 
during a given manipulation task. 

c)   No consideration for end-effector manipulation: 
where most solutions consider the problem of 
transporting objects along a pre-defined path, but do 
not account for tip-over instability during 

manipulation. 
This paper addresses the last shortcoming by integrating 

the other two as part of the solution. In most robotic 
applications, tip-over risk is more likely to occur during 
object manipulation rather than during object transportation 
over a pre-defined trajectory, due to the low speeds that 
mobile robots can deliver. The COIN algorithm introduced 
in this paper accomplishes this adaptive manipulation 
control as a secondary task that supplements the primary 
objective of inverse kinematics [9]–[13] and path following 
through redundancy resolution. COIN is capable of using a 
priori training data to achieve fast global convergence, and 
enable a mobile robot to correct its position and arm posture 
in real-time to offset the risk of tip-over instability during 
eccentric manipulation tasks. 

II. CIRCLES OF INITIALIZATION (COIN) ALGORITHM 

A. Problem Formulation 

For a mobile robot with a serial redundant arm [14]–[15] 
mounted on a base – such as in the illustration shown in Fig. 
1 – the tilting moment that the n-links generate around the 
pivot can be written in a compact recursive form as 
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where 0 3 1
Gi

d  denotes the vector position of the center 

of mass iG of link i expressed in frame 0 , and 0 3 3
Gi

d    

the skew-symmetric matrix of vector Gi
d . 0

1iR   defines the 

rotation matrix from frame i – 1 to frame 0, Mi the mass of 

link i , 1i
ig the gravitational acceleration of frame i  

expressed in frame 1i  , and 1i ext
i

 the external moment 

vector (inertial forces, etc.) applied on link i and expressed 
in frame i - 1. 
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Fig. 1. Schematic representation illustrating a mobile robot with a serial 
redundant arm (qi represent generalized coordinates) 

  

Furthermore, the arm’s forward kinematics are defined as 
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where 
Td

x y zP P P   P is the desired coordinates of the 

end-effector in the base frame, and 1 4 4i
iT   the 

homogenous transformation matrix that maps the 
coordinates of frame i  into frame 1i  . This enables the 
formulation of the optimal inverse kinematics problem as a 
constrained minimization problem defined as 
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which can be reiterated as the objective of placing the end-

effector at a desired location d P , with an arm’s posture that 
maintains the optimal dynamic balance of the robot. 

B. COIN algorithm concept 

The objective of COIN is to solve (3) for globality in real-
time using the augmented cost function ( ) ( ) ( )TL q q h q   , 

where  defines the vector of Lagrange multipliers.  
Traditionally, the convergence of a gradient-based 

optimization solution depends on the location of the initial 
guess inside the search space, which is often done randomly 
[16]. With COIN, the gradient descent is initialized in the 
convex space of the solution. This is achieved by 
extrapolating training data acquired a priori about the 
operation of the redundant arm along one selected direction 
in the end-effector’s workspace. Hereafter, we show that the 
rotation of this data preserves the convexity of the search 
space, and enables the solution of (3) to converge to the 
global optimum in few iterations. 

C. Hypothesis 

To simplify the visualization of COIN’s operation, an n-
link serial arm with a planar workspace is first considered, 
shown in Fig. 2 (a spatial workspace will be later considered 
in section III). Furthermore, suppose that an exhaustive 
global solution exists for (3), such that a steady-state (static) 

global arm posture is generated for a given task located at 

xx P , 0yy P  , 0zz P  (blue lines in Fig. 2). Here 

we chose the x-axis as the training direction, although any 
other axis centered at the origin of frame 0  could be used.  

For all other tasks xx P , 0yy P   in the arm’s 

workspace whose locus is a circle of radius 2 2
x yR P P 

 
(red circle), the COIN concept states that the global optimal 
solution of (3) can be initialized with the joint angles of the 
global posture corresponding to the intersection between this 
initialization circle and the training axis (blue lines), rotated 
by an angle 1( / )y xtg P P  (black lines in Fig. 2). Such 

transformation preserves the convexity of the global posture 
as will be proven subsequently. 

 
Fig. 2. A redundant arm in global optimal posture for β = 0 (dashed lines) 

and in posture obtained by a rotation 1( / )y xtg P P   

D. Proof: Convexity 

In the absence of transients generated by external forces 
and inertial dynamics (external forces and dynamics will be 
re-integrated in the algorithm during adaptive manipulation), 
the tilting moment η in (1), normalized relative to gravity, 
can be expressed in the plane of the arm as 
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where il and 
iGl define the length of link i and the location 

of the center of mass of link i relative to joint 1i  , 
respectively. qi denotes the generalized coordinate of joint 
i measured relative to the inertial frame. 

Equation (4) can be further simplified to 
1
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where we further define the parameters 

1

( )
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and rewrite 
cos( ) cos( )i i i n n nA q A q    

to simplify (5) to the following compact expression  
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Using (6) and (2), the solution of (3) can be derived by 
minimizing the cost function ( , )L q  , with the constraints 

appended to the objective using Lagrange multipliers λ 
 

( , ) ( ) ( )TL q q h q               (7) 

In (7), L , h ,   
respectively represent the Lagrangian, the 

equality constraints, and the tilting moment generated for a 
task defined by angle β relative to the training direction. 

The first objective of this proof is to evaluate the first 
derivative of L and examine its non-violation after a 

rotation of the initial global posture at β = 0°. The second 
objective is to investigate the positive definiteness of the 
Hessian matrix 2H L  . 

 To examine the first derivative, we first rewrite the cost 

function in (6) as 
1

, ,
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

   to reflect the 

contribution of β. In particular, at β=0° the corresponding 
joint posture is assumed to generate the global minimum for 
(7). Thus, one can write the global solution at β = 0° as 
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where the (*) symbol is added to reflect the globality of the 
posture at β = 0°. The objective is to further express   

for 

any angle β in the workspace as a function of the global 
optimal expression of (8) and its individual terms. 

Since we hypothesized that the global configuration for a 

given 1tan ( / )y xP P   can be obtained by a rotation of the 

global posture corresponding to the end-effector’s location 
at the intersection of the initialization circle of radius 

2 2
x yR P P  with the training direction, we can expand the 

cost function for any *
i iq q  into 
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In (9), the first bracketed term can be replaced by *
0 ( )q . 

In the second bracketed term, sine terms can be replaced by  
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which yields an equation for ( )q  
as a function of the 

global expression of the cost function at β = 0°  as 
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Similarly, the constraints 1 2( )h q  derived from the 

inverse kinematics can be written in terms of β and *
iq as  
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with 2 2
x yR P P  . Furthermore, the expansion of the sine 

and cosine terms in (12) allows us to rewrite (12) in terms of 
β and the global equality constraints at β = 0° defined by 
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The subsequent substitutions yield the general expression 
for (12) in terms of *

1,0h , *
2,0h and angle β of the form 
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Using (11) and (14), it is now possible to express 
( , )L q  in (7) in terms of the global cost function and the 

equality constraints at 0   as 
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Because  can be assigned any random value, we chose 

to set *
1 1  and *

2 2  . This simplifies the gradient of 

L  in (15) to 

 

1
2 * 2

,0
1

2 * 2 * * * *
,0 1 2,0 2 1,0

sin( )

n

i i
i

n n

A
L

A h h






  






     

     


    

(16) 

 

taking into account that * * * * *
,0 1 1,0 2 2,0( ) 0h h      because 

of optimality at 0   . The remaining expression in (16) is 

not necessarily zero. This concludes that the rotated global 
configuration at 0    does not generate the global 

optimal posture at the new task defined by 1tan ( / )y xP P  . 

However, the convexity of the posture at 0    remains 

unchanged under a rotation β. This means that the 
extrapolated Hessian matrix of the original global 

configuration *( )H q  remains strictly positive definite 

 . The expansion of the sine and cosine terms 

in *( )H q  can be rearranged in a compact form in terms 

of the Hessian matrix of the global posture at 0   as 
* *

0( ) cos( ) sin( ) 0SH q H H            (17) 
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where *
0H  represents the Hessian matrix at 0   , which 

is positive definite because of globality. In (17), matrix 

SH is analogous to the gradient of (16), where by definition 

sin( )S

L
H H 

 
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with L  as defined in (16). For 90         which 

delimits the domain of the arm’s workspace where the risk 
of toppling is the greatest (the front domain delimited by x-y 

axes in Fig. 3), inequality (17) is satisfied *, q only if 

matrix SH is strictly negative definite. This leads to the 

conclusion that matrix H in (18) is strictly positive 

definite, and remains so for small variations in parameters 
*q and β around the rotated posture. 

Therefore, the domain encompassed by the arm’s postures 
around the rotated initial configuration represents a convex 
set. This means that if an optimum of (7) is found in this 
convex space via a gradient descent starting from the rotated 
global posture as initial guess, this optimum will be the 
global minimum, which corresponds to the global arm 

posture for the desired end-effector position defined by dP .  

E. Visualization of Training 

The concept of COIN can be generalized to an infinite 
family of circles that cover the whole workspace of the 
manipulator. To visualize this more encompassing aspect of 
COIN, consider a sample scenario of a 4-link serial arm. If 
the x-axis is chosen as a training direction, an exhaustive 
solution of (3) for a discrete progression of end-effector 
tasks spanning the length of the training axis (Fig. 3), 
generates a global joint and Lagrange multipliers history as 
plotted in Fig. 4. This exhaustive solution is accomplished 
offline using any existing global search algorithm. As a 
result, the computational time prior to convergence is not a 
concern during training. Furthermore, the number of 
samples for the training process is chosen in a way to 
provide enough data points to generate a smooth polynomial 
fit for the history of joint and Lagrange multipliers. 

The joint angles history and the Lagrange multipliers in 
Fig. 4 can be curve fitted with a polynomial function 
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Fig. 3. Training process of 4-link arm with end-effector along y = 0 

 

where ( 1)j ic   are the polynomial coefficients and 

  ( ) 1T n mq      
is the augmented vector of joint angles, 

with n = 4 and m =2 for the 4-link arm. 
Once this training data is acquired, COIN switches from 

the Cartesian to the Polar space. This means that any task 
defined by xx P , yy P in the workspace, can be located 

on a circle of radius 2 2
x yR P P  , centered at 0 0x y and 

intersecting the training axis. At this intersection point, the 
global posture and the corresponding Lagrange multipliers 
can be calculated analytically via direct substitution in (19). 
This posture can then be rotated by an 
angle 1( / )y xtg P P  to create the initial guess for the global 

solution of any other task in the arm’s workspace. 
 

 
Fig. 4. Global training history of joint angles and Lagrange multipliers, and 

corresponding polynomial best fit for the 4-link arm of Fig. 3 

F. Simulation Results: Planar Case-study 

A case-study simulation on 4-link serial arm is considered 
to visualize the operation of COIN and to compare its 
convergence speed to existing global search algorithms. 

Fig. 4 shows a progression of end-effector tasks located 
on a circle of radius R = 1.4m. The intersection of this circle 
with the training axis y = 0 generates the initial global 
posture (blue dashed lines), which is calculated via direct 
substitution in (19). To calculate the global posture for all 
other tasks on this circle defined by x = Px, y = Py, the initial 
posture is rotated by 1( / )y xtg P P  to generate the initial 

guess (black dashed lines) for (3) at every other task. 
 

 
Fig.  5. Initial posture, rotated posture, and optimal posture for a sequence 

of end-effector tasks located on the same initialization circle radii R = 1.4m 
 

 This approach can be identically adopted to calculate the 
optimal joint posture for other tasks located on any other 
initialization circle in the arm’s workspace. The global 
convergence of COIN for this case-study occurs within 4 – 7 
iterations only. This translates into an average computational 
time of 27ms/task. In comparison, the MultiStart global 
optimization algorithm [17] achieves convergence at an 
average time of 1.77 sec/task for the 4-joint arm (processor 
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employed: Dual-Core 2.93GHZ, 3.25GB RAM). This means 
that COIN achieves a computational time reduction by 96.4 
– 98.5% as shown in Fig. 6, where the computational time 
prior to convergence for COIN and Multistart is plotted as a 
function of angle β for the 4-joint arm in Fig. 5. 

  

 
Fig. 6. Comparison of convergence time between COIN and MultiStart 

algorithms for the two case studies of Fig. 5 and Fig. 6 
 

Such capabilities of COIN can be extrapolated to include 
spatial trajectories. In such case, an end-effector task defined 

by 
Td

x y zP P P   P  is located on a sphere of radius 

2 2 2
x y zR P P P   rather than a circle of radius 2 2

x yR P P  .  

As a result, the training posture undergoes two consecutive 
transformations consisting of a yaw rotation by an angle 

1( / )z xtg P P  in the xz-plane, followed by a pitch rotation 

by 1 2 2( / )y x ytg P P P   about the z-axis (Fig. 7) to 

intersect the location of a desired task defined by vector d P .  
These two rotations generate the initial guess for COIN 

which calculates the global joint posture from (3) at d P . A 
simulation of this process is shown in Fig. 7, where an 11-
joint arm is shown tracking a spatial knot trajectory. Note 
that the global convergence time in this case is identical to 
the planar trajectories (~20ms/task) simulated in Fig. 5.   

 
Fig. 7. Simulation of 11-joint arm tracking a spatial trajectory with COIN   

III. ADAPTIVE MANIPULATION 

In the previous discussion, neither the base stabilizing 
moment, nor the arm dynamics and external load were taken 
into consideration. This is because the purpose of COIN was 
to resolve redundancy and calculate a steady-state static 
global joint posture that meets the forward kinematic 
constraints defined for a specific task d P . However, in real-
time adaptive manipulation, the arm inertial dynamics and 
external tip load create transient forces/moments that disturb 
the stable posture at d P . This causes the robot to lose 
balance, despite the globally optimal static posture. 

The primary objective of COIN is to compensate for these 
transients as a primary task, by generating swift adaptive 

manipulation commands that reposition the base relative to 
the object. The initiation of these commands is based on an 
extrapolation of (3) to account for inequality constraints. 

A. Dynamic Stability Control 

During object manipulation, the load on the arm increases 
as the object gradually loses contact with the ground. The 
measurement of end-effector’s force and moment 
components is sampled at a rate k (period T), which 

generates a discrete progression of external forces ( )n
effF k  

and moments ( )n
eff k  in the end-effector’s frame n. As 

these measurements are fed back to an optimal controller 
running COIN (Fig. 8), the base repositioning and the arm 
reconfiguration are accomplished when stability condition  
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is violated. In (20), M0 denotes the mass of the mobile base, 
0

b defines the external moments acting on the base, 0 g and 
0

0 0 0 0
T

cl x y z    denote (respectively) the gravitational 

acceleration and the position of the base’s center of mass, 
both relative to frame 0. 0 3 1( )q  is the arm’s tilting 

moment, 3 3d P   depicts the skew-symmetric matrix of 

vector dP , and 0 3 3
nR   the rotation matrix mapping the 

coordinates of frame n into frame 0. 0 3 1  is further 

added as a safety margin to the stabilizing moment. 
 Anytime condition (20) is violated, a new displacement 
vector ( )k is calculated in terms of the skew symmetric 

matrix 0 ( )effF k  as 

 
0 0 0

10

0 0 03 3
0 0 3 1

( ) ( )
( ) ( )

eff
eff

b c

q k
k F k

M l g

  








  
           

  (21) 

and the robot is moved forward by a distance 
( 1) ( )k k   . However, when this adaptive mobility is 

initiated, inertial forces resulting from the acceleration of the 
robot are induced onto the arm, which are seen as 
disturbances by COIN. These forces are included in vector 

( )ext
i q in (1) and (6), whose components are expanded as 

 

0 0 0 0( ) ( ) ( ) ( )ext lin ang per
i i i iq q q q             (22) 

 

where  
  

 
0 0 0

0 0 1
1 1

( )

( )

lin
i i G G bi i

ang i
i i G i ii

q M d a a

q R I q for arevolute joint



 
 

  

  
  (23) 

with 0
Gi

a representing the acceleration of the center of mass 

of link i relative to frame 0, ba the acceleration of the base 

resulting from adaptive mobility, 1i
Gi

I the mass moment of 

inertia matrix of link i about the center of mass iG expressed 

in frame 1i  , and 0 ( )per
i q the vector of any additional 
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peripheral measurable external moments. 
 

 
Fig. 8. Block diagram for adaptive mobility with a MIMO controller  

 

  Note that 0 ( ) 0per
n q  in (22) since the external moments 

acting on link n are explicitly isolated in (20) and (21). Also 
note that the components of the linear and angular 
accelerations of the links are calculated via discrete finite 
difference of joint displacements (Fig. 8), which are 
measured using absolute encoders. The component of ba can 

also be measured using an inertial measurement unit. 

B. Case-study Simulation of Adaptive Manipulation 

A simulation of dynamic adaptive manipulation is shown 
in Fig. 10 for a case-study 3-link arm mounted atop a mobile 
robot. The simulated task consists of lifting a 35Kg tip load 
in 3 seconds, starting from an inadequate posture of the arm. 

 
Fig. 9. Simulation of dynamic adaptive manipulation for a 3-joint arm (red 

lines are training data translated with the arm) 
 

Stability condition (20) is evaluated at every instance k of 
tip-load measurement. For the first few instances, the 
incremental tip load does not violate (20), and thus the 
robot’s initial position is maintained. However, as the tip 
load continues to increase while the object loses contact 
with the ground, condition (20) is violated at multiple 
subsequent instances. At every violation, the robot moves 
forward by ( 1) ( )k k    to offset the risk of toppling 

induced by both the tip load, and the inertial dynamics 
resulting from forward mobility. This autonomous 
locomotion continues as shown in Fig. 9 until a stable tip-
over-free posture for full-load manipulation is found after a 
total displacement of 0.6m.  

IV. CONCLUSION AND FUTURE WORK 

This paper presented a new COIN algorithm characterized 
by a fast global convergence rate that can be used for 
redundancy resolution, trajectory following, and tip-over 
stability of mobile robots via dynamic adaptive manipulation 
in real-time. Future work will explore the stability of COIN 
by investigating the possibility of adaptive initialization in 
the event when the gradient descent diverges. This adaptive 
initialization will seek to update the offline training data in 
real-time in order to provide robustness to the controller in 
event of numerical divergence. 
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