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Abstract—In this paper, we study the scheduling 
architecture that enables an assembly of mobile modules to re-
configure into a humanoid formation with a manipulator arm. 
The investigated problem arises from the articulated nature of 
the formation which involves multiple degrees of freedom, thus 
requiring a control approach that synchronizes the actuators’ 
motion during shape metamorphosis. Using the principles of 
motion kinematics and caterpillar tracks modeling, we present 
a coherent solution which we further validate on a sample 
three-module formation of STORM (Self-configurable and 
Transformable Omni-directional Robotic Modules). Simulation 
results on MSC ADAMS CAR validate the feasibility of the 
synchronization architecture, and offer further insight into the 
dynamic dependencies of coupled motions. 
 

I. INTRODUCTION 

N MODULAR ROBOTICS [1], the high number of 
actuators involved in the motion generation of a given 

formation is a byproduct of the aggregate individual 
actuators that each swarm member contributes to the 
assembly. In the event of a highly articulated formation, the 
ensuing number of degrees of freedom prohibits the manual 
control of the assembly, as the ensemble of simultaneous 
commands involved in the generation of a desired motion 
grows proportionally with the total number of actuators [2]. 

Central to the control of multi-agent formations is an 
architecture that synchronizes the motion of individual 
members. In fact, motion synchronization is a ubiquitous 
control scheme that can be exemplified in many 
observations, such as in nature’s collective animal behavior 
and in neuro-mechanical control of movement [3]. For 
example, schooling in marine biology is a coordinated 
behavior that synchronizes the speed of small fish to create a 
large formation with the intention of avoiding predation 
through confusion and size intimidation. Alternatively, in 
vertebrate physiology [4], the generation of motor activity is 
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the derivative of a synchronized firing process of the neural 
system resulting in a deterministic behavior or movement, 
such as walking [5], breathing, etc. 

This neuro-mechanical synchronous interface is 
controlled by a central pattern generator (CPG) [6], [7], 
which lies at the core of biomimetic research [8] on motion 
generation in articulated formations of rigid-structure [9] 
and modular robotics [10], [11]. However, CPG-based 
motion control is primarily applicable to the generation of 
oscillatory movements, such as swimming undulations [12], 
since the implementation of CPG requires the motion to be 
harmonic, with each actuator repeatedly returning to its 
original starting point. Therefore, for non-rhythmic motion, 
a non-CPG control scheme dictates a more fundamental 
kinematic approach for movement scheduling that further 
takes into consideration the dynamics of the formation.   

In this paper, we are interested in such non-rhythmic 
behavior of modular robotic chains. In particular, we study 
the scheduling architecture that enables a three module 
configuration of STORM [13] to reshape into a humanoid 
formation. Given the antagonistic nature of some joints and 
the number of degrees of freedom involved in this assembly, 
we propose a scheduling architecture for joint motion and 
pulley velocities that consists of a sum of sequential 
actuations, weighted by corresponding step functions with 
parabolic rise time. Simulation results validate this 
approach, and offer further insight into the dynamic 
dependencies of simultaneous actuations that contribute to 
the overall process of shape metamorphosis.    

 

 
 

Fig. 1. A mock-up of STORM [13] in a humanoid formation during object 
manipulation 
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II. SYSTEM OVERVIEW AND CAE MODEL 

A. Overview of STORM 

The modular robot we study in this paper is STORM, 
which possesses an articulated structure inspired by the 
Hybrid Mechanism Mobile Robot [14] – [16]. STORM 
consists of two categories of independent mobile modules: a 
locomotion and a manipulation module, both shown in Figs. 
1 and 2. The locomotion module comprises a wheeled unit 
in the middle which can translate vertically along a prismatic 
joint. This enables the module to selectively deliver hybrid 
multi-directional mobility via either the tracks 
(longitudinal), or the wheels (lateral), by toggling the 
mobility mode along the prismatic joint. Alternatively, the 
manipulation module can provide longitudinal tracked 
mobility with differential steering in the undocked 
configuration, and further carries a central one-link arm with 
an end-effector. 

 In a scaled formation, these two modules are coupled 
together via a docking interface [17], which creates a 
revolute joint between them, and enables one module to 
rotate relative to its neighbor in a chain architecture. Details 
about this docking process, the three operation modes of this 
interface and its rigidity can be found in [17], [18]. 

 

 
 

Fig. 2. Schematic of the locomotion and manipulation modules showing 
relevant mobility details 

 

In particular, in this paper, we are interested in the motion 
synchronization of a three-module formation of STORM, 
referred to as STORM-3 (Fig. 1), and consisting of one 
manipulation module cascaded between two locomotion 
modules. A kinematic diagram of the actuated degrees of 
freedom of this formation is shown in Fig. 3, which involves 
a total of thirteen joints described as follows: 
 Four revolute joints for the active pulleys of the 

locomotion modules (R1 – R4), where each pulley drives 
one of the two timing belts of every tracked unit.  
 Four revolute joints to drive the wheels of the 

locomotion modules’ wheeled units (R5 – R8). 
 Two revolute joints at the docking interface (R9 and 

R10) between the locomotion modules and the arm, 
actuated by two separate motors. 
 One revolute joint for the arm (R11). 

 One revolute joint for the pitch inclination of the end-
effector (R12). 
 One revolute joint to open and close the fingers (R13). 
 Two prismatic joints (P1, P2) to toggle between the two 

mobility modes of the locomotion modules. 
 

 
 

Fig. 3. Kinematic diagram of STORM-3 showing all revolute and prismatic 
joints 

    
We note that in this paper, we are primarily interested in 

the motion scheduling of the joints that directly contribute to 
the reconfiguration of STORM-3 into a legged formation. 
This excludes the two joints of the end-effector, as well as 
the arm (R11) and the wheel joints (R5 – R8).   

B. 3-D CAE Model on MSC ADAMS CAR 

To investigate the proposed synchronization architecture 
of STORM-3, we first modeled the locomotion and 
manipulation modules on MSC ADAMS CAR, which is a 
multi-body dynamics software platform providing track 
wrapping, tension optimization and simulation capabilities. 
The tracks’ elasticity was capture by modeling them as a 
series of discrete segments coupled together through 
revolute joints. The rubber property of these segments 
further enables the tracks’ wrapping around the active and 
passive pulleys, as well as the passive roller suspensions 
located in the middle of the tracked units. An example of 
such wrapping is depicted in Fig. 4 for the CAE model of 
the locomotion module, which also reflects the elasticity of 
the tracks when crossing a bump in the terrain (see 
simulation video in [19]). 

 

 
 

Fig. 4. CAE model of the locomotion module reflecting tracks’ elasticity  
 
Contacts between the track segments and the terrain are 

automatically generated by ADAMS CAR. In addition, 
contacts between the wheels of the wheeled units and the 
terrain are manually created, along with all the different 
revolute and prismatic joints that couple the different bodies 



  

of STORM-3. The ensuing CAE model resulting from the 
integration of all subsystems is shown in Fig. 5, and will be 
subsequently adopted to analyze the proposed 
synchronization architecture. We note that pertinent mass 
and dynamic properties of the different subsystems involved 
in this assembly are summarized in Table 1.    

 

 
 

Fig. 5. A complete MSC ADAMS CAR model of STORM-3 with six track 
assemblies wrapped around corresponding pulleys and suspensions 

 
Table 1. Table 2. Mass and polar moment of inertia of the different 

subsystems of STORM-3 in its ADAMS CAR model 
 

 Mass (g) 
Polar Moment of inertia about 
Z-axis, (g×mm2) (×105) 

Locomotion Module   
Active Pulley 276.0 1.956 
Passive Pulley 170.0 1.189 
Passive Suspension 24.3 0.0485 
Track Segment 2.25 0.0225 
Tracked Unit Chassis 4288 934.2 
Wheeled Unit Chassis 2300 254.4 
Wheeled Unit Wheel 11.0 1.625 

Manipulation Module   

Active Pulley 211.3 1.659 
Central Arm 2144.3 223.2 
Passive Pulley 147.2 1.134 
Track Segment 2.25 0.0225 
Chassis 5580 969.6 
   

 

III. DYNAMIC MODEL AND SCHEDULING ARCHITECTURE 

To study the dynamics and motion synchronization of the 
humanoid formation of STORM-3, we take advantage of 
structural symmetry, and formulate the equations of motion 
for the left locomotion module only. Similar formulations 
can be extrapolated for the right module by symmetry.  

A. Equations of Motion 

A nomenclature is first defined in reference to Fig. 6 
which depicts the free body diagram of the left locomotion 
module and its interaction with the arm. Thereafter, the 
superscript L will be used to designate the left module. 

  

XYZ   Global Cartesian frame attached to the ground 
L  Center-to-center length of the modules, equal to 400 

mm in STORM-3 
,J P  Points on the axes of joint R9 and pulleys R1 and R2, 

respectively 
L

Cd   Distance between point J and the center of mass of the 
locomotion module  

,L L   Angular rotation of pulley joints R1, R2, and docking 
joint R9 as a function of time, respectively 

L x  Forward displacement of the left locomotion module 

, PL
m m  Mass of the locomotion module and active pulleys, 

respectively 

M
m  Mass of the manipulation module 

LR Ground reaction acting on the left locomotion module  
LT  Traction force generated by the active pulleys of the left 

locomotion module 
L

rollf  Rolling friction force opposing the forward motion of the 
left locomotion module  

L
P  

Drive torque generated by the active pulleys of the left 
locomotion module 

0  Pre-tension torque generated by the elasticity of the 
tracks around the drive pulleys  

L
J  Torque generated by the motor driving joint R9  

,P LOKJ J
 

Polar moment of inertia of the active pulleys and the 
locomotion module about their respective center of mass 

 

 
 

Fig. 6. Free body diagram of the left (L) locomotion module and  the central 
manipulation module in the legged formation of STORM-3 

 
 For the humanoid formation, the reconfiguration process 
is split into three sequential stages as depicted in Fig. 7. The 
first stage involves the rotation of one locomotion module 
relative to both the arm and the other stationary module, 
while concurrently translating the corresponding wheeled 
unit to prevent interference with the ground (Fig. 7(b)). The 
second stage consists of rotating the central arm to a vertical 
posture relative to the two stationary locomotion modules 
(Fig. 7(c)-(d)), while the third stage involves the execution 
of a scissor-like motion that results in the desired humanoid 
formation, with the two locomotion modules providing leg 
support on the sides. It is this last stage that requires motion 
synchronization as the maneuver involves the simultaneous 
actuation of joints R1 – R4 and R9, R10.  



  

With this nomenclature, a Lagrangian derivation of the 
kinetic and potential energies generated at Stage 3 yields an 
equation of motion for the active pulleys (Fig. 6) as 
 

0( cos ( ))L L L L L
P roll J Pf r F d L t J           (1) 

 

where r defines the distance separating point P from the 
external track protrusions (55mm for the locomotion 

module). L
JF denotes the force generated by the applied 

torque L
J , where /L L L

J JF d , with Ld  depicting the 

corresponding lever arm (Fig. 6). This force opposes the 
forward motion of the locomotion module, and behaves as a 
wall reactive force in the event of an asynchronous motion 
(see the traditional latter example for instance [20]). 
  

 
 

Fig. 7. A sequence of actuations showing the progression towards the 
reconfiguration of STORM-3 into the desired humanoid formation  

 
 A similar Lagrangian derivation generates an equation of 
motion for the locomotion module in the form of 
 

    
  2 2 2

sin ( ) cos ( )

cos ( )

L L L L L L
L C M roll

L L L L
J LOK L C P

m d m L g R t T f L t

J m d m L t

  

  

   

    

 (2) 
where g defines gravity, and 1   a scaling factor that 
reflects the share of the manipulation module’s mass carried 
by the left locomotion module ( 0.5   for a symmetrical 

motion in Stage 3). LR  can be calculated from the balance 
of dynamic forces, Note that in Stage 3, the central arm 
experiences a pure vertical translation, and therefore does 
not contribute to the rotational inertia of the formation. 

B. Motion Scheduling and Synchronization Architecture 

Using the equations of motion in (1) and (2), an optimal 
control problem can be formulated and solved to generate a 

control history for joints R1 – R4 and R9, R10 during the 
scissor-like motion of Stage 3. In this formulation, we adopt 
the final time ft  as the cost functional, and re-write (1) and 

(2) into a system of non-linear state equations which we 
further combine with inequality constraints ineqg , and 

boundary conditions 0h  (at t = t0 corresponding to the 

beginning of Stage 3) and fh (at t = tf corresponding to the 

end of Stage 3). The resulting problem can be written as 
 

max

max

0

( , )

sup( )
(3)

sup( )

(0) (0)

(0) (0)

(0) (0) 0(0) (0) 0

f

L
P P
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J J

L L L L d
init

L L L L d
init f

L LL L

Min t
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and theconstraints g
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 
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where 
TL L L L       

  is the state vector, 

( , )f t  the system of non-linear state equations extracted 

from (1) and (2), and max
P , max

J the maximum joint torque 

for the pulleys and the docking joints, respectively (sup 
denotes the supremum). The optimality formulation in (3) 
can therefore be reiterated as the problem of finding the 

optimal control history L  or L  and L which can take a 

STORM-3 formation from the initial rest state 0h  (Stage 2-

(d)), to the final desired state fh  – defined by L d and 

L d (Stage 3-(f)) – in minimum time without exceeding the 
joint torque thresholds. 

The solution to (3) can be derived using an existing solver 
for two-point boundary value problems, such as the shooting 
method [21]. However, because the solution to a boundary 
value problem is neither unique nor guaranteed, it becomes 
prudent to also consider an alternative kinematic control 
scheme which correlates the motion of different joints by 
their trigonometric dependencies. That is, keeping the falling 
latter example in mind, one can relate the forward motion of 
the locomotion module to the vertical displacement of the 

arm to generate a kinematic control signal ( , ( ))L t t   as 
 

 
0

0

0 0

( , ( )) cos ( )1
sin ( )

L L

L

t t

t t L r t
t t t

t r
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

 


  
 


      (4) 

which implicitly assumes a no-slip condition. In the event of 
slip, the forward displacement of the locomotion module 
will lag the rotation of joints R9, R10, which increases the 
latter torque as will be discussed subsequently. Such motion 
lead or lag can be captured by the optimal dynamic 
formulation in (3) rather than (4). 



  

 The control signal in (4) can then be integrated into an 
overall scheduling architecture implemented using 
sequential step functions with parabolic rise time, defined as 
 

 ( ) , ,0, ,1init rw t step t t t         
 

where defines the value of w  for rt t , and 

 , ,0, ,1init rstep t t t  parabolically interpolates ( )w t between 

the initial time tinit and the rise time tr. An example of such 
scheduling is given in (5) and (6) for the actuation of R9 and 
R10 from the beginning of Stage 1 up to the end of Stage 2 
 

  ( ) ,1.2,0,1.7,1
2

L t step t
    

 
                 (5) 

   ( ) ,0,0,1.1,1 ,1.2,0,1.7,1
2

R t step t step t
      

 
  (6) 

 

These two functions are part of the chart plotted in Fig. 8(a). 

IV. SIMULATIONS AND COMPARISON 

Three simulation case-studies are reported in this section 
to highlight the motion scheduling control based on the 
kinematic scheme. These simulations also reflect the 
response of the robot to asynchronous control resulting in a 
motion lead or lag and their impact on joint torques, as 
captured in the dynamic formulation in (3). 

In the kinematic case-study, the actuating functions for 
the active pulleys in Stage 3 are based on a selected constant 

angular velocity 5 /L R rad s     for R1 – R4. This 

generates a forward displacement of the locomotion modules 

that corresponds to a rotation of 59L    for R9, and 

59R    for R10 from Stage 2-(d) to 3-(f). The combined 
synchronous actuation signals are depicted in Fig. 8. 

Using the CAE ACAR model of STORM-3 shown earlier 
in Fig. 5, a simulation of the kinematic synchronous case 
with the actuation signals of Fig. 8 was first accomplished to 
extract the torque histories on the actuated revolute joints. 
These are shown in red in Fig. 9(a) for R9, R10, and in Fig. 
9(b)-(c) for R1 – R4. Albeit the kinematic control scheme is a 
deterministic approach which eliminates the likelihood of 
numerical divergence, it rather sacrifices the control 
flexibility of the robot and the ability to customarily share 
the torque load on the different joints involved in the 
reconfiguration process. Such flexibility is captured by the 
alternative control approach formulated in (3), where an 
adaptive control can be accomplished by tuning the dynamic 
parameters of the problem, such as manipulating the values 

of max
P and max

J for different payload scenarios. 

Two examples of such adaptive control are illustrated in 
Fig. 9. For the first scenario, the extreme case where the 

pulleys are locked ( 0L R    ) and the tracks are 

dragged on the ground is simulated. This corresponds to an 

unbounded sup( )L
J , which generates a motion lag where 

the forward translation of the locomotion module is lagging 

the rotation of joints R9 and R10. Such behavior decreases 
the torque magnitude on R1 – R4 at the expense of an 
increased torque on R9, R10, as the latter become the sole 
contributor to the reconfiguration process at Stage 3 in this 
case. 

 

 
 

Fig. 8. Control functions for kinematic synchronous architecture from Stage 

1 to Stage 3, (a) Angle history ,L R    (b) Corresponding velocities ,L R    

and (c) Velocity signal ,L R      

 
Alternatively, the torque can be redistributed toward the 

pulleys to alleviate the load on joints R9 and R10. This is 
accomplished by creating a motion lead, where the 
locomotion modules are moving faster than R9 and R10, 
thereby reducing their torque while increasing the torque on 
the pulleys as shown in Fig. 9 (black plots). Such 

redistribution can be achieved by un-bounding sup( )L
P , 

and capping sup( )L
J  in (3) to a desired threshold. An 

ACAR simulation video of the reconfiguration process in 
this case-study can be found in [22]. 

Note that in Fig. 9, a simple moving average of order 8 
was used to eliminate the spikes generated from integration 
errors. This filter distorts the torque plot during the 
transitional phase from Stage 2 to Stage 3. Also note that the 
high torque values in Fig. 9(a) are attributed to the large 
inertial dynamics generated in these simulations. This is 
because the reconfiguration process, from Stage 1 to 3, was 



  

simulated in ~ 3 sec in order to minimize the convergence 
time of the CAE simulation. This time is amplified by the 
large number of degrees of freedom introduced by the track 
segments in these simulations. In reality, the execution time 
of this shape reconfiguration will be dictated by the dynamic 
torque load generated during this process, as well as by the 
torque capacity of the coupling interface [17]. 

 

 

 
Fig. 9. Comparison of torque load on (a) Joints R9, R10 (b) Joints R3, R4 (c) 
Joints R1, R2 , for both a kinematic control scheme (red), and for a dynamic 

control with a case of motion lag (blue) and motion lead (black) for the 
forward motion of the locomotion module.  

V. CONCLUSION 

This paper reported the study on motion scheduling and 
synchronization for a 3-module formation of STORM robot. 
The study is based on analytical and multi-body dynamic 
simulations which highlight the advantages and 
disadvantages of the proposed control methods (kinematic 
versus optimal dynamic). Such results will be further refined 
and tested in the future on a physical formation of STORM-
3 as we continue the development of this robot. 
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