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This paper details an innovative method for measuring and investigating off ship air 

wakes that develop during the operation of naval vessels in common underway wind 

conditions.  Wind currents, both naturally occurring and those resulting from ship motion, 

can create ship air wakes that make operation of rotary wing aircraft in the vicinity of the 

ship particularly challenging.  Currently extensive underway flight testing is required to 

determine safe wind over deck launch and recovery envelopes for rotary wing aircraft.  This 

underway flight testing can be difficult to schedule and is very expensive since it involves 

multiple flights of manned helicopters.  Small unmanned TREX 600 radio controlled (RC) 

helicopters have been equipped with a custom data package that includes an Inertial 

Measurement Unit (IMU), Global Positioning System (GPS) receiver and transmitter.  The 

instrumented TREX 600 helicopter is flown back and forth through the ship air wake from 

YP676, which is a dedicated 108 ft long US Naval Academy research vessel, and detects the 

impact of the associated ship air wake on the 4.3 ft rotor diameter helicopter.  IMU and GPS 

data are transmitted in real time to another data package mounted on the ship.  The ship 

data package also records pilot control inputs to the helicopter.  Through the use of a 

MATLAB script the TREX 600 helicopter position relative to the ship is determined in real 

time.  Received IMU data from the helicopter is also filtered through a trained neural 

network which removes IMU oscillations due to pilot flight control inputs.  Air wake data Aω 

is then determined which measures the intensity of the air wake on the TREX 600 helicopter.  

Comparison of the air wake data Aω show good correlation to regions of significant air wake 

intensity predicted by advanced Computational Fluid Dynamics (CFD) simulations.     

Nomenclature 

   = Air Wake Intensity Data 

BPNN =  Back Propagation Neural Network 

CFD = Computational Fluid Dynamics 

GPS =  Global Positioning System 

IMU = Inertial Measurement Unit 

INS = Inertial Navigation System 

PWM =    Pulse Width Modulated 

RC = Radio Controlled 

RF =  Radio Frequency 

  = Relative wind angle on horizontal plane 
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  = Raw angular velocity measurement data from Gyroscope 

   = Low pass filtered angular velocity data 

ωr = Neural Network compensated angular velocity data 

   = Standard deviation filtered angular velocity data 

ωs’ = Neural Network predicted standard deviation filtered angular velocity data 

I. Introduction 

AUNCH and recovery of rotary wing aircraft from naval vessels can be very challenging and potentially 

hazardous. Ship motion combined with the turbulence that is created as the wind flows over the ship’s 

superstructure can result in rapidly changing flow conditions for rotary wing aircraft. Additionally, dynamic 

interface effects between the vessel air wake and the rotor wake are also problematic. 

 To ensure aircraft and vessel safety, launch and recovery 

envelopes are prescribed for specific aircraft types on different 

ship classes (Fig. 1).
1
 Permissible launch and recovery 

envelopes are often restrictive because of limited flight 

envelope expansion. Flight testing required to expand the 

envelopes is frequently difficult to schedule, expensive and 

potentially hazardous. Currently, the launch and recovery wind 

limits and air operation envelopes are primarily determined via 

the subjective analysis of test pilots (e.g. excessive flight 

control inputs are required to safely land on the flight deck), 

using a time consuming and potentially risky iterative flight 

test build-up approach. The time and risk of flight testing could 

be reduced through the complementary use of computational 

tools to predict test conditions and extrapolate test results, 

thereby reducing the number of actual flight test points 

required. However, current computational methods are 

insufficiently validated for ships with a complex 

superstructure, such as a destroyer or cruiser.
2-9

 Validated 

computational air wake predictions can also be used for ship 

design and operational safety analysis.         

 Much effort has been expended to validate CFD predictions 

of ship air wakes above the flight decks of naval vessels, 

primarily through the use of ultrasonic anemometers.  Within 

the limits of variable atmospheric boundary layers, ocean wave 

effects and ship motion the CFD codes are considered 

reasonably accurate for the region above the flight deck.
8,10,11

  

However, significantly less validation data is available for the 

CFD prediction of off ship air wakes.  This paper presents a 

new and innovative method to indirectly measure ship air wake 

effects away from the flight deck region where placement of 

ultrasonic anemometers is currently not feasible.  
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Figure 1. Launch and recovery envelopes, showing 

allowable relative wind over deck, for MH-60S 

helicopters on USS Ticonderoga (CG 47) class 

cruiser (Ref. 1).  
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Figure 1a. Modified YP676 naval training vessel with flight deck (left); b). RC helicopter with retrofitted 

instrumentation board and flotation system (right). 

II. Off Ship Air Wake Measurement System 

 

The system discussed herein makes use of a small RC helicopter with rotor diameter of 1.3 m (4.3 ft) to estimate 

ship air wakes. The instrumentation system is used to estimate turbulence patterns in the air wake aft of the Naval 

Academy’s YP676 training vessel (Fig. 1a). The system uses an IMU as its basic sensor and correlates the 

helicopter’s vibration with ship air wakes. The system is a technological successor to instrumentation system 

presented in our prior work
12,13

 and is composed of two identical instrumentation boards, where one is located on the 

helicopter and acts as transmitter while the other is located on the naval vessel and acts as a receiver. Figure 1b 

shows the RC helicopter retrofitted with the instrumentation board and flotation. The YP676 vessel was equipped 

with a bow mounted anemometer sensor array, GPS and electronic compass to help the vessel’s Craftmaster to 

generate the desired relative wind condition. The instrumented helicopter was then maneuvered in a back and forth 

trajectory in the region aft of the underway vessel. The light weight RC helicopter, weighing approximately 5 kg (11 

lbs), is significantly influenced by the ship air wakes and hence the onboard IMU senses the vibrations induced by 

air wake interaction. IMU and GPS data from the helicopter is wirelessly transmitted to the workstation located in 

the flight deck of the YP676 vessel, where this data is combined with GPS and compass data from the boat to map 

the helicopter’s vibrational data with its location trajectory relative to the ship.   

 

 

Ship air wake is an example of a turbulent air flow, which is characterized by a high wind velocity gradient.  

Such velocity gradient exerts non-uniform loading on rotary wings and makes the helicopter rotate about the 

direction given the curl of local wind field in addition to linear drifting.
14

 Such rotation is hence an important 

characteristic of ship air wake and can be easily measured with the help of a Gyroscope present within the IMU 

package.
15

 Through extensive experimentation it was inferred that it is not only the angular velocity that 

characterizes air wake, but also variations in the angular velocity. Thus, the product of magnitude of angular 

velocity and standard deviation of angular velocity was taken as a measure for air wake intensity. Since the RC 

helicopter is controlled by using a swash plate mechanism, any maneuver will result in tilting of the helicopter. 

Therefore, the Gyroscope signals contains some component that is due to helicopter’s maneuvers resulting from 

pilot inputs. In order to use Gyroscope signals for air wake estimation it is important to remove the components 

arising from pilot inputs. A Futaba 8-channel radio frequency (RF) receiver (identical to the RF receiver on 

helicopter) was used with the  system’s receiver to capture pilot inputs in the form of five pulse width modulated 

(PWM) control signals transmitted by the pilot’s radio transmitter. The system was designed to acquire data at a 

refresh rate of 45 Hz. Data from sensors with low refresh rate like GPS was linearly interpolated to match with other 

faster sensors. Figure 2 shows a schematic diagram of the current instrumentation system. 

This paper presents the use of Back Propagation Neural Networks (BPNN) as a filter to remove pilot input 

components from measured gyro signals. The angular velocity measured by the gyroscope, being a vector quantity, 

can be treated as a vector sum of rotations caused by pilot control inputs and ship air wake. Thus by training the 

BPNN to predict angular velocity from pilot input data, the ship air wake component in the gyroscope can be 

estimated by simple vector subtraction. As the helicopter maneuvers in the air wake of the underway vessel, the 

vibrations are captured, corrected for pilot inputs and then combined with the helicopter’s location to obtain relative 

ship air wake information. 
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Figure 2. Schematic of instrumentation system.  

III. Neural Network for Pilot Input Compensation 

Artificial Neural Networks or simply Neural Networks are one of the most commonly used machine learning 

techniques used in robotics. Neural networks can be seen as a directed acyclic graph with computational units 

(called as neurons or perceptron’s) as its nodes
16-18

. Each neuron is a multiple input single output system where the 

output is computed by applying an activation function on weighted sum of input data. 

   (     )              ( ) 

Here   is the output of the neuron,   is the input vector,   is the weight vector,   is bias and   is the activation 

function. A neural network is defined by the structure (topology) of the network and the type of activation function 

of the involved neurons. Thus training of a neural network involves estimation of optimal weights and biases.  

BPNN is a multilayer feed-forward network that uses an error back propagation algorithm
18-20

 for training. In the 

current application, BPNNs are trained to predict response of helicopter’s gyroscope to pilot inputs in an air wake 

free environment. The predictions from these networks are then used for pilot input compensation during actual 

field-testing of the system in the Chesapeake Bay area. 

A. Data preprocessing for BPNN training 

As the helicopter’s motion is controlled by swash plate mechanism, the attitude of the helicopter depends on 

vector thrusting by tilt of the swash plate (cyclic control). The angular velocity of the helicopter is thus the result of 

the change in cyclic control from the pilot and this change can be quantized by the rate of change in the servo input 

signals.
13

 Thus all the pilot input channels are modeled as a linear function of time (       ) in a fixed 

window of N samples using least square methods. Here y is the PWM signal in one of the pilot input channels in the 

given window of time and t is the corresponding time index. The line parameters m and b are estimated using the 

least square method as follows: 

  
 ∑     

 
    ∑   

 
    ∑   

 
   

 ∑   
  

    (∑   
 
   )

        
∑   

  
    ∑   

 
    ∑   

 
    ∑     

 
   

 ∑   
  

    (∑   
 
   )

         (2) 

In order to account for the imperfections in modeling of pilot input patterns, deviation from the linear fit was 

also considered as a pilot input parameter and was estimated as follows: 

  ∑ |   (     )| 
                (3) 

Here    is the actual PWM signal input as obtained from the RC receiver. Thus all the three parameters {      } 

were estimated for each of the five pilot input channels to obtain a 15 dimensional input feature space for neural 

network training.  
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Figure 3. Predication error distribution of neural networks. 
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The high-speed rotation of the rotor wings introduces large quantities of high frequency noise into the IMU 

reading and the frequency of noise is much higher than the frequencies of oscillations resulting from ship air wakes 

or pilot inputs. In the current system this high frequency noise is filtered with the help of a Gaussian low pass filter. 

If   is the three dimensional raw gyroscope data then the corresponding low-pass filtered data (  ) is obtained by 

the application of Gaussian low pass filter with cut-off frequency of 1.05 Hz. The cut-off frequency was selected on 

the basis of spectrum analysis of the pilot input signals and air wake data.   

As the air wake intensity is characterized by product of magnitude of angular velocity and standard deviation of 

angular velocity, a total of four channels of gyroscope data were predicted by the BPNN.  Three of them were 

Cartesian components of gyroscope data with low pass Gaussian filter and the fourth channel was the local standard 

deviation of the magnitude of the gyroscope data. In total four neural networks were trained to predict each of the 

four gyroscope data channels and had one dimensional output space. 

B. Neural network topology 

Neural networks have three components: input layer, hidden layer and output layer. The number of nodes in the 

input and output layers of neural network are determined by the dimensionality of the input and the output data. 

Thus each of the four neural networks had 15 nodes in the input layer and one node in output layer. To 

accommodate sufficient room for nonlinearity in the helicopter’s response to pilot inputs, two hidden layers were 

selected for each of the networks. The number of nodes in the hidden layers was selected using a “trial and error” 

method, and then analyzing network performance with actual data. The numbers of nodes in the two hidden layers 

of each of the four neural networks were as follows: {10,7}, {9,8}, {10,8} and {10,8}.  With the commonly used 

Levenberg–Marquardt algorithm
21-22

 for error back propagation training, the hidden layers and the output layer used 

“tansig” and “purelin” functions respectively as their activation functions.
23

 The neural networks were trained with 

10-fold cross validation
24

 to prevent over-training and loss of generalization. 

C. BPNN performance in modeling helicopter response to pilot inputs  

To model the helicopter’s response to pilot 

inputs, the training data for the neural network 

was collected from indoor flights conducted 

in a large aircraft hangar at Davison Army 

Airfield. The hangar provided a closed 

environment, free from any kind of air 

disturbance and thus helped in measuring 

vibrational response of helicopter to pilot 

inputs. Six indoor training flights each with 

duration of around 10 minutes (~27,000 

samples) were conducted using three different 

helicopters. This paper presents results from 

one of the three helicopters (TREX ESP 600). 

During the neural network training process 

25% of the total data (~55,000 samples from 

two flights) was used for training the network 

and the remaining 75% was used for testing 

and assessing the network performance.  
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Figure 4. Prediction results of neural networks based on indoor flight data. 

0 0.5 1 1.5 2 2.5
-50

0

50

G
y
ro

X
(d

e
g
/s

)

Sample Index (104)

Neural Network Performance for ESP Helicopter

 

 

Actual

Predicted

0 0.5 1 1.5 2 2.5
-50

0

50

G
y
ro

Y
(d

e
g
/s

)

Sample Index (104)

 

 

Actual

Predicted

0 0.5 1 1.5 2 2.5
-200

0

200

G
y
ro

Z
(d

e
g
/s

)

Sample Index (104)

 

 

Actual

Predicted

0 0.5 1 1.5 2 2.5
-20

0

20

G
y
ro

S
(d

e
g
/s

)

Sample Index (104)

 

 

Actual

Predicted

0 0.5 1 1.5 2 2.5

60

80

100

P
ilo

t 
In

p
u
t 

(P
W

M
)

Sample Index (104)

 

 

SP1

SP2

SP3

Tail

Throttle

Figure 3 shows histogram plots of the prediction error of all the four neural networks. The skewed shape of the 

histograms towards zero error corroborates the capability of the trained neural networks in estimating pilot input 

components in helicopter’s gyroscope response. The actual prediction results along with pilot input signals are 

shown in Fig. 4 where actual measurement in blue color is overlaid on BPNN prediction in red. Again, high degree 

of prediction accuracy is visible in these results as the plots overlap with each other very well. In this figure, GyroX, 

GyroY, GyroZ and GyroS refer to Cartesian components of angular velocity (along X, Y and Z axes) and the local 

standard deviation in angular velocity, respectively.  

 

IV. Air wake pattern estimation 

As mentioned earlier, this paper models ship air wake with both angular velocity and standard deviation of 

angular velocity. Thus there is a need for pilot input compensation in both angular velocity and its standard 

deviation. If {        } is the low-pass filtered gyroscope data (  ) from the helicopter in Cartesian coordinate 

system and {  
    

    
 } is the corresponding pilot input components estimated from three Neural Networks, then 

the compensated magnitude of angular velocity (  ) can be estimated as follows: 

   √(     
 )  (     

 )  (     
 )             ( ) 

Since the components arising from the helicopter’s own motion were removed from the filtered measurements, 

the resultant angular velocity was a measure of external disturbance (ship air wake). It was also observed that both 

the ship air wakes and helicopters’ motion cause variations in angular velocity measurements. Thus, standard 

deviation was used as a good measure of air wake intensity and hence requires pilot input compensation as well. The 

local standard deviation (  ) of the magnitude of the gyroscope data ( ) in a window of length N samples (~1 sec 

data) is calculated as follows:  

  ( )   
√∑ ( (   ) 

 

 
∑  (   )

  
 ⁄

    
 ⁄

)

 
  

 ⁄

    
 ⁄

 

 

                  ( ) 
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Figure 5. Estimated ship air wake pattern for β angles 0° and 15°. 
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where     [   ]  and L is total number of samples in  . The standard deviation of the angular velocity as 

calculated in Eq. (5) is compensated for the pilot input component by subtracting the standard deviation estimated 

from for the fourth neural network. Eq. (6) shows the actual air wake intensity obtained as the product of the 

compensated angular velocity and the compensated local standard deviation  

  ( )  (  ( )    
 ( ))    ( )        [   ]               ( ) 

where   
  is the local standard deviation of the gyro data predicted from the Neural Network. The ship air wake 

intensity being a function of relative position with respect to naval vessels makes better sense when represented in 

relation to the relative trajectory. The trajectory of the helicopter was obtained in the boat’s frame of reference by 

using the GPS locations of the YP676 and the helicopter along with the YP676’s heading direction as obtained from 

the onboard digital compass. 

V. Results, Conclusions and Future Work 

The current system was tested underway in the Chesapeake Bay to experimentally determine the ship air wake 

patterns generated by YP676. During test flights, the wind relative to the boat was maintained at approximately 15 

knots of relative wind for two different   angles of 0° and 15°, where β is measured from bow of the ship in 

clockwise direction using the anemometer array mounted on the bow of YP676. The helicopter’s altitude was 

maintained at the YP676’s upper deck level throughout the test flight to ensure repeatability in the results. 

Figure 5 shows air wake intensity distribution as estimated by Eqn. (6), overlaid on the helicopter’s trajectory in 

the YP676’s frame of reference. In these plots the color represent air wake intensity patterns for beta angles 0° and 

15°, respectively. The high air wake intensity zones are concentrated along the centerline in air wake distribution for 

beta angle 0° and tilted to the right of the central line in the air wake distribution for beta angle 15°. These results are 

show reasonable correlation to the predicted air wakes for β = 0 and 15°.
15

  

The knowledge of rotational disturbances from ship air wake is important for safe operation of helicopters on 

naval vessels, but is not sufficient on its own.  A significant component of the ship air wake causes lateral drift in the 

helicopter, which needs to be taken care of. Currently, the authors are working to add an Inertial Navigation System 

(INS) to the instrumentation system to estimate the absolute linear velocity of the helicopter.  

Future work in this area will also include the following: 

(1) Use of more robust machine leaning techniques such as Linear Bayesian Regression to estimate the pilot 

component that contributes to the helicopter’s translational motion and compensate for the same. This combination 

of translational and rotational disturbances will certainly give better description of ship air wake patterns using this 

instrumentation system. 

(2) The instrumented RC helicopter will be flown through a “known” air wake in a large hangar to calibrate 

system response.  The known air wake will be generated with industrial fans blowing air over a backward facing 

step and will be measured with ultrasonic anemometers placed in multiple locations downwind from the fans and 

backward facing step.  
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(3)  Development of a method for directly measuring off ship air wakes using an RC helicopter carrying two 

ultrasonic anemometers that would use RF to transmit real time anemometer data as the helicopter visits various test 

points away from the ship.  The anemometer data would then be corrected for helicopter motion and attitude. A 

notional schematic of this system is shown in Fig. 6 below.   

 

                       
Figure 6.  Proposed TREX 600 helicopter with anemometers for direct measurement of air wakes. 
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