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Abstract— This paper presents the mechanical design and
analysis of a novel leg mechanism that has only one active
degree of freedom (DOF). The proposed mechanism is intended
towards simplifying the mechanical and control complexity
identified with the robotic legs implemented on quadrupedal
platforms capable of dynamic locomotion. First, a survey of
high-speed and reduced DOF legged robotic systems is
presented to elucidate the design challenges and determine
system requirements. Drawing from these requirements, a
novel design of a six-bar leg mechanism with a single DOF is
proposed. The novelty of the mechanism lies in its ability to
trace a path that accommodates the execution of trot-gait by
the quadrupedal platform realized by integrating the proposed
leg. The kinematics of the mechanism is formulated and a
multi-body model is used to perform a series of case studies on
the sensitivity of the foot trajectory to the leg’s dimensional
parameters. Preliminary work on optimization of the foot
trajectory is then performed. This research will ultimately
assist the future design of quadrupedal robots to test the ability
of spatial robotic tails in stabilizing and maneuvering the
platform.

I. INTRODUCTION

Legged locomotion has shown potential benefits in
traversing uneven terrain and obstacles in comparison to
wheeled and tracked vehicles [1]. Only a few robots have
been successfully implemented in real-world applications
due to relative complexity of design and control of legged
machines. Such examples include, but are not limited to, the
ANYmal quadruped [2] and the Adaptive Suspension
Vehicle [3] developed for nuclear power plant maintenance
and field transportation, respectively.

Considerable research was devoted to the investigation of
dynamic stability control [4], and walking pattern generation
[5]. However, the leg mechanism determines the number of
active DOF required for operation. This corresponds to the
efficiency of the system, thus making these components
fundamental for the design and operational aspects of legged
robots as pointed out in [6]. For a legged robot to navigate
utilizing a symmetric or asymmetric gait, perform forward
motion, and turning maneuvers on uneven terrain, a
minimum of three active DOFs are required for spatial
positioning. Turning is often the least used motion during
walking/trotting gaits. Traditionally the hip Abduction/
Adduction (HAA) DOF is responsible for turning and is
separated from the other two-DOFs, hip Extension/Flexion
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(HFE) and knee Extension/Flexion (KFE). Typically, two
DOF leg designs [7] are sufficient to engage HFE and KFE
to locomote dynamically in a plane. However, multiple
actuators are required to change direction cyclically during a
walking/trotting gait. In addition, both DOFs must be
controlled simultaneously, which results in complex control
algorithms and slow speed, static gaits when implemented
either on bipedal/quadrupedal robots.

To address these challenges, the authors present a novel
single-DOF leg conducive to performing a dynamic gait,
namely trotting/running-trot at high speeds when mounted
on a quadrupedal platform. This paper investigates the
hypothesis that leg mechanisms designed with reduced
DOFs can trace a foot trajectory favorable to dynamic
locomotion.

The long-term goal of this research is to develop a
quadrupedal robot capable of performing high-speed, planar
trot-running. The fully integrated quadruped will be used as
an experimental platform to investigate the benefits of
stabilization and maneuvering of legged robots using
articulated spatial robotic tails [8]-[11].

II. MOTIVATION

A. High-Speed Legged Locomotion

This section reviews high-speed legged robots with
emphasis on their design topologies, active DOFs, gait types
and the demonstrated forward velocities of the legged
robotic platform.

Observations from nature indicate that fast locomotion
can be realized by asymmetric gaits such as trotting and
bounding [12]. These gaits are referred to as dynamic gaits
due to the requirement of active balancing while in motion.
The step cycles involved in these motions may be divided
into two stages: the stance phase, in which the foot contacts
the ground, absorbs impact forces, and pushes the robot
forward, and the swing phase, in which the leg is moved to a
new contact point.

Fig.1. Existing high-speed legged robots: (A) MIT Cheetah [27], (B)
HYQ leg [28], (C) KAIST robotic leg [17], (D) Boston Dynamics Cheetah
[29].
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The MIT Cheetah Quadruped, shown in Fig. 1(A),
utilizes legs with two active DOFs and custom designed
actuators located at the hip and shoulder joints and has
demonstrated trotting speeds of 6 m/s [13]. It employs
virtual compliance between the hip and the distal link of its
three-link leg structure, where a multi-layered controller is
used to shield the motors from impact forces [14]. The
HYQ, a hydraulically and electrically actuated quadruped,
shown in Fig. 1(B), employs legs with three active DOFs
each and has exhibited trotting at speeds up to 2.2 m/s [15].
It utilizes a two-link leg similar in structure to that of
plantigrades, and employed a high-level controller to plan its
leg trajectory [16]. The KAIST robot, illustrated in Fig.
1(C), is a bipedal platform that runs at an average speed of
0.75 m/s, with a step frequency of 2.8 HZ [17]. Its motors
are also located at the hip and it uses a physical spring
positioned in the distal part of the leg to absorb impact
forces experienced at the foot in dynamic locomotion. Fig.
1(D) shows the Boston Dynamics Cheetah, which reported a
maximum attainable speed on a treadmill of 12.9 m/s using
an off-board hydraulic unit with its digitigrade leg structure.

As the above discussion demonstrates, in platforms
employing electric actuation and tetherless locomotion it is
preferable to locate motors close to the hip, so that the
reflected inertia at the distal part of the legs is reduced, and
higher speeds can be achieved. It also worth noting that
compliance within the leg mechanism, physical or virtual, is
necessary to absorb the impact forces of high-speed
locomotion. However, the majority of legs in the literature
have to synchronize multiple actuators and employ a multi-
layered control structure in order to execute the required
trajectory. In addition, the integration of multiple active
DOF joints correlate to a greater mass and bulkier structures
requiring more power from the motors to locomote.

B. Reduced-Degree of Freedom Leg Designs

To address the challenges of highly articulated leg design,
researchers have investigated reduced-DOF strategies. In
this paper, a reduced-DOF legged system is defined as one
possessing one or two active DOFs. The RMLeg is a two-
DOF leg composed of two four-bar mechanisms in an
arrangement designed to produce a stable walking gait [7].
The design requires two motors working in tandem to
generate one step cycle, resulting in low efficiency, as its
reported speed of 0.1 m/s reflects. The Rhex robot utilizes
six C-shaped legs, each independently actuated and capable
of continuous rotation about a motor shaft [18]. The robot
successfully implemented a pronking gait at 0.55 m/s.

A variety of single-DOF leg mechanisms, such as those
depicted in Fig. 2, have been explored in previous research
[19]. Analysis of reported trajectories shows that these
mechanisms produce approximately straight-line stance
phase trajectories. The Jansen mechanism depicted in Fig.
2(A), the Ghassei linkage in Fig. 2(B), and the Klann
linkage, as shown in Fig. 2(C), are all crank-based leg
mechanisms that exhibit straight-line approximations [20].
Many of the trajectories that can be created by the Watt-I
mechanism in Fig. 2(D), and the Stephenson-II and
Stephenson-III mechanisms in Fig. 2(E) and Fig. 2(F)

Fig. 2.

Formerly studied/implemented single-DOF leg mechanisms: (A)
Jansen Linkage, (B) Ghassei linkage, (C) Klann Mechanism, (D) Watt-1,
(E) Stephenson-II, (F) Stephenson-I11

respectively, have complicated swing phases that require the
leg to trace complicated curves or suddenly transition into
protraction, resulting in undesirable sharp turns. Prior
analysis shows that the stance-phase trajectory for fast
locomotion is dictated by the minimum amount of time the
leg is in contact with the ground, as is exhibited by the
sinusoidal wave observations made in [21].

Simple mechanisms with reduced DOFs may be
constructed, which have lower mass, cost, and control
requirements than legs with three or more DOFs. The
drawback of these designs is that they limit the achievable
workspace of the leg, thus making it difficult to maintain
stability while executing dynamic gaits or maneuvers.
Reduced-DOF legs typically compensate for their reduced
workspace by employing static gaits, redundant structures,
or lower speed walking gaits. However, reduced-DOF
mechanisms must also deal with the problem of motor
synchronization. Additionally, running at high speeds is
more efficient if actuators are not required to change
direction during a step cycle. In summary, while reduced-
DOF mechanisms are a promising means of reducing the
design and control complexity involved in leg locomotion,
the problems of minimizing ground contact, synchronizing
motor actuation, and optimizing distal mass distribution in
such systems remain a research challenge

C. Design Motivation

It is desirable for a legged robot to have an efficient
control structure and a simple mechanical structure while at
the same time being capable of locomoting at high-speeds.
Furthermore, fast running is a function of both the actuation
and the physical characteristics of the leg mechanism.
Exploiting the properties of single-DOF mechanisms
removes the need for synchronized motor control within the
leg. As stated previously, minimization of the distal mass of
the mechanism transfers the leg’s inertial moment closer to
the body, thus increasing achievable speed. In addition, the
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Fig. 3. Schematic diagram of the leg mechanism. A rendering of the
quadruped integrated with the novel leg (inset).

trajectory must be smooth in order minimize ground contact,
thus increasing the force generated with each step to propel
forward. The angle of attack (the angle at which the leg
approaches the ground) plays a crucial role in stable running.
Therefore, it has to be kept to a minimum as established
in.[22] Finally, the desire for a compact and robust
mechanism is to reduce the required actuation power while
still enabling it to withstand the high impact motion of
running. Therefore, the objective of this research is
summarized according to the following requirements for the
leg to satisfy:

1. The leg mechanism should only be driven by a

single, continuously rotating link.

2. The mechanism should be designed with reduced
inertia for high-speed applications.

3. The generated foot trajectory should be a smooth
closed loop curve.

4. The angle of attack should be minimized.
5. The mechanism should be compact and robust.
III. MECHANICAL DESIGN

This section details the mechanical design of the proposed
leg mechanism, illustrated in a schematic diagram shown in
Fig. 3. The leg is a six-bar mechanism, with its five links
denoted as the femur, tibia, HFE link, KFE link, and the
driver link, responsible for actuation.

The driver is attached to a high power geared motor and
is capable of continuous rotation. Motion is transferred to
the femur and tibia links via the HFE and KFE linkages
resulting in a closed loop, smooth foot trajectory, a sample
of which is shown in Fig. 4. This mechanical arrangement
fulfills Requirement 1. The hip and the driver are located
close to each other on the body, at an offset, with the driver
placed close to the hip to satisfy Requirement 2.

In order to dissipate energy resulting from impact during
a high-speed gait, a spring damper system is incorporated
into a translational joint located at the end of the tibia that
represents the foot. A linear potentiometer provides a means
of measuring the displacement of the spring that corresponds
to a force feedback signal that can be used to compute

stability criterion. A conceptual quadrupedal model with the
designed legs is illustrated in Fig. 3.

IV. KINEMATIC ANALYSIS

This section presents the kinematic analysis performed to
estimate the foot position, using a multibody formulation.
The configuration of the system can be determined by
defining a vector of generalized coordinates q; = [r, ¢;]" for
the position and orientation of each of the i links, where
vector 7; = [x;, y,] and ¢; denote the position and orientation,
respectlvely of the i link center in the global frame. This
frame is located at the hip joint as depicted by the revolute
joint, D in Fig. 4 for our model. A multibody formulation is
used to define the system’s constraint equations, which in this
case consists of the six revolute joints, along with a distance
constraint between the hip joint, D and the driver joint, A and
a driving constraint on the angular displacement of the
driving link. The positions of the revolute joints are deﬁned
by specifying local position vectors, drawn from the i” local
frame to the adjacent revolute joints of each of the bodies.
The revolute joint constraints can then be written as:

r(i,j) _ PP WY WP
O =r s —r,—s] =n+4s-r,—4s" =0. (1)

Here, 4; is the rotation matrix corresponding to a rotation by
an angle ¢; about the global z-axis. The number of
constraints is given by T, = 2n, + 2d + d,, where n, is the
number of revolute joints, d is the number of distance
constraints, and d, is the number of driving constraints. Here,
n.=6,d.=1,and d=1, Hence T, = 15.

Given estimations of the system’s initial configuration,
the Newton-Raphson method is used to solve for an initial
position that is consistent with the constraints specified by
Eq. (1). For the single-DOF mechanism, the crank angle is
taken to be the driving input. Based on the value of the
driving input, and the initial conditions of the system, the
link positions may be computed iteratively as x;-x,= vi+sat®
for small time steps, where v and a are given by the velocity
and acceleration equations at each time step, given by:

q=-0, 0, ®)]

g=-@,y 3)

Where Jis a vector of acceleration independent terms [23].
Here, ®; =, and ®, is the Jacobian. The generalized

Leg
coorchna‘[e frame
E

Fig. 4. Kinematic scheme adopted for the proposed mechanism. Here AB
=L,; BC = L,; DE = L;; BF = L,; EP¢=Ls; DA = Ls Shown in the inset are
the trajectories generated. The light trajectory depicts one of the trajectories
from the curve library discussed in sec. VI
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positions calculated by the above multibody formulation are
used to build a kinematic model to be able to track the foot
trajectory of the leg throughout a full step cycle. The dark
trajectory in Fig. 4 depicts the results of the kinematic
simulation with heuristically selected link lengths. It can be
observed that the trajectory follows a smooth curve. This
demonstrates that this mechanism is capable of generating
trajectories that minimize ground contact in order to
maximize propulsive impulses. However, this trajectory
shows that the initially selected parameters (position and
orientation) require adjustments to generate a trajectory
suitable for trotting.

While the simulated foot trajectory satisfies Requirement
3, further improvement of the link parameters is necessary to
arrive at an angle of attack that is more conducive to forward
propulsion. In order to reduce the size of the parametric
design space, for future optimization, a sensitivity analysis
was performed to determine the impact of key parameters on
the resultant changes to the angle of attack.

V. IDEAL TRAJECTORY GENERATION

The workspace of single DOF legs is constrained by the
design parameters (link lengths and configurations); thus,
the foot trajectory cannot be altered once the designer
determines these parameters. Therefore, optimization is
required to trace a favorable trajectory also known as ideal
trajectory. In this section, an effort to establish an ideal
trajectory is undertaken.

For a dynamic gait such as trot, an ideal stance phase
curve should be sinusoidal [24] while the swing-phase
trajectory is an aspect of careful design. We establish a
stance phase trajectory in order to make comparisons with
the trajectories generated by the proposed mechanism
discussed in Sec. VI. The swing-phase is modeled by a cubic
spline using the Bezier curve [24] formulation, expressed as:

n
pj(t): ; B;'l(t)cj . 4
j=0

For 0 <t <1, where ¢; = {cy, ci,....., ¢} s a set of control
points defined to produce a specific curve and is the
Bernstein basis polynomial of degree n. The control points
are initially placed at the beginning, end and apex of the
stance phase, and then iteratively weighted to arrive at the
desired trajectory. The resulting trajectory should be smooth
to avoid perturbations in the system during locomotion. The
ideal stance-phase trajectory is as depicted in Fig. 5.
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Fig.5. Plot depicting the ideal trajectory generated by Bezier curve
formulation. The triple overlapping and double overlapping of control
points increase the weight at that respective position and shapes the curve.

VI. OPTIMIZATION

This section analyzes the effects of varying key link
lengths on the foot trajectory, as part of the sensitivity
analysis. Further, it establishes metrics to quantify the
performance of simulated trajectories with respect to the
ideal trajectory established in Sec. I11.

A. Sensitivity Analysis

To address the challenge of optimizing the vast design
space of a six-bar mechanism, preliminary optimization in
terms of sensitivity analysis is performed. The result of this
analysis is a condensed design space that is conducive to a
rigorous optimization process. The kinematic model derived
in Sec. IV is modified for the purpose of this analysis to
accumulate multiple foot trajectories, their angle of attack,
and their stride lengths, creating a library of simulations.

Varying position and orientation is a tedious process and
one that requires much iteration. Furthermore, the Newton-
Raphson method is a time consuming process due to the
high-resolution requirements for convergence. We therefore
apply the alternative approach of varying the link lengths
themselves, thus varying position and orientation of the
respective points defining the length. The design space of
the lengths is given by the set {L,, Ly, L3, L4, Ls, and Lg}.
However, performing a brute-force sensitivity analysis on
the complete design space is prohibitively computationally
expensive. Instead, we identify two link lengths associated
with the crank length, L; and the distance between the hip
joint, located at point A, and the crank joint at point B, L.
As L, is the driving link and L¢ dictates the position of the
hip joint relative to the crank joint, these lengths are the
most important driving factors of the foot trajectory shape
and orientation and as such are the focus of the sensitivity
analysis. The parameters for the analyses are varied within a
sensible range, which are selected to ensure that the
designed leg maintains a compact form factor that satisfies
Requirement 5. The heuristically selected link lengths also
dictate to what extent the lengths can be varied. Performing
simulations beyond these bounds would result in singular
configurations and end up adversely affecting the end
trajectory to a point where smooth curves are no longer
produced. These trajectories are in violation with
Requirement 3 and as such are of no interest. The sensitivity
analysis is undertaken with a focus on the effects of varying
link lengths on angle of attack, ay and stride length due to
their far-reaching effects on stability and distance traversed
in one step-cycle.

0.1
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y(m)

-0.3

04

-0.5 -0.
-03 -02 -01 0 0.1 0.2 0.3 -03 -02 -01 0 0.1 0.2 0.3

x(m) z(m)
Fig.6. Bounded sensitivity analysis: (A) Crank shaft vs stride length (B)
Hip-Crank distance vs Angle of attack.
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First, L, is varied from 0.04 m to 0.08 m; the generated
trajectories are stored and overlaid on each other as shown in
Fig. 6(A). As shown, the generated trajectory at the upper
limit has a shorter stride length in comparison to that
generated by the lower bound. From the results produced, a
preliminary conclusion is reached that increasing the length
L increases the stride length. To get a broader perspective of
the effect of L, on the stride length and angle of affect,
further simulation studies were conducted and plotted in Fig.
7. As shown, the preliminary conclusion is proven accurate
from the plot. The driver link L, plotted on the left y-axis has
a direct effect on the stride length. It is also evident from the
same plot that the angle of attack is minimally affected,
resulting in a leg position ahead of the symmetric axis on the
hip, thus causing an imbalance during dynamic locomotion.
It can be concluded that the longer the radius of the shaft, the
longer the stride length. It is to be noted that varying the link
L, beyond 0.08m showed irregular trajectories as mentioned
earlier. Hence, for this set of heuristic link lengths, L, at
0.08m gives a maximum stride length while satisfying
Requirements 3 and 5.

The sensitivity analysis on Lg clarifies that varying the
value of Lg results in large changes to the orientation of the
foot. From the geometry, we can infer that Ls must be
greater than L; or else the links will collide, while
Requirement 5 can again bind the upper limits. For these
simulations, the upper bound was selected to be 0.20 m and
the lower bound to be 0.10 m, and simulations were
performed between intervals of 0.05 m. The results of the
simulation are illustrated in Fig. 6(B) and demonstrate that
oy decreases with decrease in the length of Ls. Furthermore,
to strengthen this observation, a series of simulation studies
were performed. The second series of simulations were
performed from 0.18 m to 0.06 m at an interval of 0.02 m.
The result of this study, as shown in Fig. 7, reciprocates the
results of first set of simulation done on Lg. It is worth noting
from the same plot, the effect of Ls on stride length is very
small. These conclusions were not intuitive and were only
established through the application of sensitivity analysis.

In conclusion, from these sensitivity analysis studies we
learn that the stride length increases with the increase in the
length L, and @y decreases with the decrease in length Lg. It
is evident then, that in order to satisfy Requirement 4, the
length L¢ must be small while remaining larger than L,.
There has to be a compromise of stride length to achieve an
appropriate angle of attack.

B. Curve Metrics

In order to establish the best trajectory from the library of
curves accumulated by sensitivity analysis, a qualitative
comparison must be established. It is difficult for a single

TABLE I. HAUSDORFF DISTANCES OF THE SIMULATED TRAJECTORIES

Variables H(A,B) Variables H(AB)
L1 Ls '.1 Ls
0.04 0.2 0.19 0.04 0.14 0.15
0.06 0.2 0.16 0.04 0.12 0.13
0.08 0.2 0.13 0.04 0.1 0.1
0.1 0.2 0.11 0.04 0.06 0.084

All units are in meters
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Fig.7.  Plots showing the effects of varying link lengths L1 and L6 on
angle of attack and stride length

metric to estimate completely the similarities between two
curves. Therefore, in this work, two parameters, the
Hausdorff distance [25] and Jaccard distance [26] are
employed to quantify the best possible trajectory. The first
metric, the Hausdorff distance H(A4,B), calculates the
Euclidean distance between the two sets of points, in this
instance the desired trajectory established in Sec. V, and the
trajectory being compared. It is expressed as:

H(A,B)=max(h(A4,B),h(B, 4)) . 5)

In (5), h(A,B) is the directed Hausdorff distance from set 4
to set B. From the generated library, smooth trajectories
were selected, the Hausdorff distance was then computed,
and the results are recorded in Table. I. As shown, the
distance between the ideal and comparable trajectory is at a
minimum for L; = 0.04 m and Ls = 0.06 m, indicating that
this particular curve among all the curves is closest to the
ideal. However, this index does not consider the length or
orientation of the curve; therefore we cannot discern from
this metric any information on whether the indicated ideal is
encompassing, encircled by, or tangent to the desired curve.

Another metric is therefore introduced to further quantize
the generated trajectories. This metric compares the
similarity of the two sets, A and B. and is known as Jaccard
similarity index. It calculates the Jaccard distance d;, which
is a measure of the dis-similarity between the sets.

This can be established by first calculating the Jaccard
index J;, defined as:

ANB
5 =408 (©)

AUB
Further, d; = 1 — J;. The Jaccard distances are calculated for
the same simulated trajectories as above and are shown in
Table. II. The minimum value for d;, 0.1148, corresponds to

TABLE II. JACCARD DISTANCES OF THE SIMULATED TRAJECTORIES

Variables Variables
d_, dJ
Ly Lg Ly Le
0.04 0.2 0.1446 0.04 0.14 0.1352
0.06 0.2 0.1486 0.04 0.12 0.1278
0.08 0.2 0.1566 0.04 0.1 0.1234
0.1 0.2 0.1665 0.04 0.06 0.1148

All units are in meters
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Fig.8.  Realization of the best trajectory from the simulated trajectories

L; of 0.04 m and L¢ equal to 0.06 m. This indicates that
curves generated by these parameters most closely resemble
the ideal trajectory. This finding corroborates with the result
obtained from Table. I. This trajectory, pictured in Fig. 8, is
closest to the ideal of those contained within the curves
generated by the selective optimization of link lengths L,
and Lg. The angle of attack in this configuration, oy = 64.64°,
is in the range of stable running established in [22].

This result will be used as a starting point for rigorous
optimization in future work to determine the remaining
optimum design parameters.

VII. CONCLUSION

This paper presented a novel, single DOF leg mechanism
in an effort to realize a dynamic gait while reducing
mechanical and control complexity. A study is then
conducted to identify crucial parameters of the design that
affect the foot trajectory. Results of sensitivity analysis
indicate that: (1) variations of crank radius proportionally
affect the stride length, and (2) the variation of the distance
between the hip and crank joint inversely affects the angle of
attack. Moreover, with help of curve metrics, the trajectory
closest to the designed ideal trajectory is identified.

Future work will include optimization of the dimensional
parameters identified in Sec. VI.B to synthesize a gait that
more closely generates the idealized swing-phase path. A leg
prototype will be developed and its performance tested.
Moreover, a quadruped integrating the proposed leg will
serve as an experimental platform to study the performance
enhancements that robotic tails provide.
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