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ABSTRACT

This paper presents a novel robotic tail design that utilizes
a serial chain of universal joints to generate spatial motion. In
nature, animals utilize their tails to assist in maneuvering and
stabilization while moving; this research aims to provide a
robotic platform capable of extending these functionalities to a
mobile robot. By utilizing a tail to assist in stabilization and
maneuvering, the required functionality of other locomotion
mechanisms in a mobile robot, such as legs, is reduced. The tail
mechanism presented is actuated by sets of three cables routed
along the robotic structure; quasi-independent segments within
the tail are created by tying off a set of three cables to a link
along the tail. Actuation is distributed within the underactuated
mechanism by compression and extension springs mounted
along the tail. Kinematic and dynamic analysis of the tail is
performed to model the tail trajectory and predict the actuation
requirements. Three methods of optimizing spring stiffnesses
are provided that weigh different performance goals, and a
methodology for using these results to select spring stiffnesses
is provided. Results are generated to compare the kinematic,
static and dynamic models to one another to analyze the impact
the different loading effects have on the tail behavior.

1 INTRODUCTION AND BACKGROUND

A rich source of inspiration for robotics research in recent
years has been bioinspired legged locomotion. However, the
predominant focus on humanoid bipedal locomotion and leg-
focused  approaches  (design/task-planning/control)  for
stabilization and maneuvering ignore the prevalence of tail-like
structures in nature to assist in these functionalities.

The goal for including a tail-like structure on-board a
mobile robot is to assist in the system’s propulsion,
maneuvering, stabilization and/or manipulation. This could be
used to help augment an existing robot’s functionality, or to
offset the functionality required of another locomotion
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mechanism. For example, in a legged robot, the tail could be
used to help turn the system while walking or running [1] and to
balance the robot in response to an external disturbance. This
would allow the legs to primarily serve as a means of
propulsion within the system, reducing their required
complexity.

Previous research into robotic tails has primarily focused
on single-degree of freedom pendulum-like structures that
provide a single functionality, such as propulsion [2],
stabilization [3] or maneuvering [4]. Examples of multi-
functional tails presented in the literature include
propulsion/maneuvering [5] and maneuvering/self-righting [6].
However, in order to justify the inclusion of a robotic tail on-
board a legged robot, it should be capable of both reducing the
required complexity in the legs and significantly enhancing
functionality.

In addition, hyperredundant robotic structures more closely
resemble tails observed in nature than simple pendulums. Two
subsets of this class of robots are continuum and serpentine
robots [7]. Continuum robots are defined by the continuous
deformation of the robotic structure, instead of discrete
displacements at defined joints [8]. These structures are
primarily utilized on the meso-scale for medical procedures [9],
although  macro-scale  manipulators have also been
demonstrated [10]. Serpentine robots are typically composed of
several identical rigid-link modules. These structures
approximate continuous deformation with their serial chain of
similar, compact links. These structures are primarily used as
snake-like mobile robots [11], but have also been demonstrated
as robotic manipulators [12].

A key challenge in adapting hyperredundant structures for
use as a robotic tail is the need for cantilevered mounting of
dynamic  robotic  structures.  Previous  macro-scale
hyperredundant robots have either been high stiffness [13],
which limits dynamic performance, or designed to be vertically
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mounted [14], in which the structure hangs to reduce the
moment induced by gravity in the joints. The significant effect
of the tail’s mass acting over relatively large distances from the
base tends to cause large amount of ‘sag’ in elastic structures, or
requires significant actuation to support it.

When considering the actuation of hyperredundant robots,
two key challenges arise: (1) how to apply loading along the
length of the structure, and (2) how to distribute that loading
between redundant joints. In terms of challenge (1), a common
approach is to utilize cable-driven actuation. The key benefit of
cable-driven actuation is the ability to localize actuators at the
base of the robot, reducing the minimum mass and size of the
tail structure.

In terms of distributing actuation, two fundamental
approaches may be considered: rigid, kinematic coupling or
flexible, mechanical coupling. Rigid, kinematic coupling
explicitly reduces the number of DOF of a hyperredundant
mechanism by constraining the relative motion of adjacent
joints, using structures such as gears or four-bar mechanisms.
Flexible, mechanical coupling maintains the distinct DOF in
various joints, but provides a means to re-distribute loading
between links using elastic springs.

This paper focuses on a novel design approach for a
robotic tail utilizing the second approach to distributing
actuation (flexible, mechanical coupling; prior work has
explored rigid, kinematic coupling [15,16]). It refines and
extends the design concept and model presented in [17] to
consider dynamics and spatial motion. The resulting design is
called the Universal-Spatial Robotic Tail (USRT)—universal
for its use of universal joints between links and spatial for its
inherent spatial workspace. Section 2 details the design concept
and dynamics model for the USRT. Section 3 presents methods
of optimizing spring stiffness along the tail structure. Section 4
utilizes simulation results from these models to analyze tail
performance. Section 5 summarizes the research and discusses
planned future work, including experimental validation and
joint-consideration of the tail with a legged robotic platform.

2 MECHANICAL DESIGN & DYNAMICS MODEL

This section presents the mechanical design concept for the
universal-spatial robotic tail (USRT) and details the derivation
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Figure 1. Universal-Spatial Robotic Tail (USRT).

of the design’s dynamic model.

2.1 Design Concept

Figure 1 shows the USRT design concept. Six disks are
serially connected from a base link through universal joints to
allow relative pitch and yaw rotations between the disks while
constraining relative roll. Each joint subsegment is designed
with a joint stop to limit net bending in any given direction to a
fixed angle. The tail is subdivided into two quasi-independent
segments by six cables routed along its length. Three cables tie
off at disk 3, and three cables tie off at disk 6.

The six cables are controlled by six motors. During
operation, two of these cables will be tensioned, and the third
will passively ‘follow’ the tail trajectory to maintain a negligible
tension. This allows switching between which subset of two
cables are tensioned during operation.

Actuation is distributed along the tail by elastic springs. As
shown in Fig. 2, two types of springs are utilized: compression
and extension. A compression spring is mounted around each
universal joint to resist displacement from the straight
configuration. The primary function of this spring is to
distribute angular displacement when bending horizontally (i.e.,
yaw angles). An extension spring is mounted vertically above
the compression spring in each subsegment and compensates
for the induced moment due to gravity in the universal joint.

2.2 Dynamics Model

The tail’s dynamics model will have 4 control inputs and
16 state variables. The 4 inputs are cable displacements: two for
a pair of cables tying off at disk 3, and two for a pair of cables
tying off at disk 6. These cable displacements will typically be
the cables that are also in tension, but this is not a requirement.
The 16 states are the 12 joint angles and the 4 cable tensions.
The 12 joint angles correspond to the six pitch angles and six
yaw angles that define the configurations of the six universal
joints. The four cable tensions correspond to two positive
tensions applied on cables at the base for each segment.

In order to calculate the trajectories of these 16 states, 16
governing equations are needed. Twelve of these equations
come from joint equilibrium—a property of revolute joints is
that they cannot support a moment aligned with their axis of
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Figure 2. USRT subsegment with compression and
extension elastic springs.
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rotation. Given that a universal joint is composed of two
orthogonal revolute joints, these governing equations can be
calculated using Eq. 1, where p; and y; define the joint i pitch-
and yaw-axis unit vectors, respectively, and M; jy; defines the net
joint i moment at the universal joint center. As shown in Eg. 2,
four loading effects will be included in M;j, for the dynamic
model: inertia (Min), gravity (Mign), universal-joint spring-
dampener-actuator (USDA) (M;uspa) and cable (M; e1); if M inr
is neglected, the dynamic model becomes a static model.

T
M =0,
Lo ielL...6] (1)
Vi Mi,jnt =0
Mi,jm = Mi,inr - Mi,grv - Mi,USDA - Mi,cbl )

The remaining four governing equations come from driving
constraints that ensure the tail’s joint angles generate cable
routing paths that match the desired cable displacement. For
cable j terminating in segment k, this condition is defined by
Eq. 3, where Jjxqes and oj are the desired and calculated cable
displacements.
5j,k _§j,k,des =0 3)

This formulation of the mechanics model accounts for the
two classes of loading along the tail—external and internal—in
different ways. The external loading (gravity and inertia)
depends on the sources of that loading ‘downstream’ of the joint
under consideration. For example, joint 3 will account for the
inertial loading and gravitational forces of disks 3-6. The
internal loading (elasticity and cabling) accounts for forces and
moments acting between two disks. Since the loading on
adjacent disks is equal and opposite, the loading only affects the
universal joint between those two disks.

2.2.1 __ Kinematic Analysis

Equation 4 defines the orientation matrices R; of the disks
from body 0 (the actuation module) to body 6, where 1 is the
identity matrix; ¢; and 6; are the universal joint i pitch- and yaw-
joint angles, respectively; Ry(p) is a y-axis rotation by angle ¢;
and Ry(0) is an x-axis rotation by angle 6. Using these rotation
matrices, the joint axes p; and p; may be defined using Eq. 5,

where y| and x| are the i frame y- and x-axis unit vectors,

respectively, defined in the i frame. By convention, in this
analysis, a superscript denotes the frame in which a vector is
defined; if a superscript is omitted, it is defined with respect to
the ground frame.

Ri = H - 1
I:zi-l IQil-l > O

p =Ryl 7 =RX )
For gravitational and inertial loading, the global-frame
positions pijj.c from joint i to the link j center-of-mass (COM)
are required. To aid in this calculation, the joint positions pj
and link COM positions p;com are calculated in Egs. 6 and 7,
where Ljy; is the distance between adjacent universal joint

Rii_l =R, ((Di )Rx (‘gu) 4

centers, z/ is the i frame z-axis unit vector defined in the i

frame, and Lj,c is the distance from joint i to the link i COM.
Using these, pijac is calculated using Eq. 8. These kinematic
variables and others in the following analysis are illustrated in
Fig. 3.

0 i=1
Prn :{pi-l,jnt + Ly Rz i>1 ©
Picom = Pijn + Lazc Rz; @)
Pija2c = Pjcom — Bijm (8)

For both the USDA and cable loading in subsegment i,
calculations require the relative position p/g,, between the

disk centers i-1 and i in the link i-1 frame. This is defined in Eq.
9, where Lpy;p is the distance from the disk O center (i.e., the
centroid of the three cable routing holes in the actuation
module) to joint 1, and Ljyp is the distance from joint i to the
disk i center.

Pibao = {LDZJVOZE " LJZDRiHZii i=1
i, 02D = y o
(LJZJ - LJZD)ZH + LJZDRi' i i>1

(9)

For the USDA loading, the position vector pi‘jpg of the
subsegment i extension spring and associated deformed spring
length L, are calculated using Eq. 10, where p, o, is the side
k spring mounting position in the disk-frame and [ja|| denotes

the 2-norm of a. In addition, a vector p; s from joint i to the
subsegment i extension spring mount at disk i is defined in Eq.
11.

pii,-ipg = _pi,%zs + pii,%)zo + Rii-1 piz,Dzsv Li,spg :" pii:ipg " (10)
Piaas = R; (I-Jzozii + piz,Dzs) (11)
For actuation loading, the relative position pi‘j,HZH of the

Figure 3. USRT subsegment with compression and
extension elastic springs.
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cable j routing holes between disks i-1 and i is defined in Eq.
12, where pij‘hI is the position vector from the disk i center to

the disk i routing hole j defined in the disk-frame. This is used
to calculate the segment k cable j displacement o; using Eq. 13,
where Ly iS the distance between adjacent routing holes
when the universal joint angles are zero. The position pijon
from joint i to the link i cable j routing hole is defined in Eq. 14.

p:}H oH = _pij-,lhl + pii,_lozo +RI* pij,hl (12)
*

ik :Zmpilj,HZH"_LHZH,O) (13)

Pijion =R (I-Jzozii + pij,hl) (14)

The inertial loading also requires analysis of the tail’s
linear and angular velocities and accelerations. The links’
angular velocities w; are defined in Eq. 15, where X denotes the
first derivative with respect to time of x. The angular
accelerations a;, linear velocities Vi and Vicom, and linear
acclerations a; j, and a; com may be found by differentiating Egs.
7, 8 and 15.

O i1
o, +R,o7; >0

0 i= , L
={ 2T e —ayEegRN (15)
2.2.2 Loading Analysis
The gravitational moment M;g,, at joint i is due to the
gravitational forces associated with disks i through 6. Equation
16 defines M; g, Where m; is the disk j mass, g is gravitational
acceleration, x is the global frame unit vector, and pF denotes

the cross product pxF .

Mi,gn/ :Z?:i Bi,j,JZCFj,gr\/' l:j,gr\/ :_mjgx (16)
Like gravity, the inertia of links i through 6 will contribute
to the joint i inertial moment. Equation 17 quantifies this
relationship, where Fjjn, and Mj i are the body j inertial force
and moment. They are defined in Eq. 18, where | J’ is the body-

frame inertia tensor for link j.
6 ~
Mi inr = Zj:i (Mj,inr,b + pi,j,JZCFj,inr,b) (7)
Fiims =M@ com: Mjins =R 1R, +o;R;1/Rjw; (18)
The joint i USDA moment M;yspa, defined in Eq. 19,
represents the net moment acting at the joint due to four sources
of loading in each subsegment: the extension spring (M), the
compression spring (M), the joint dampening (M; 4mp) and the
joint angle limit (M jim)-
Miuspa = Mg+ M o + M

icp i,dmp

j.inr,b

+ M.

i,lim (19)
The subsegement i extension spring generates a force Figyq
that contributes to M, defined in Eq. 20. Figyq is defined for
the subsegment i extension spring in Eq. 21, where k¢ is the
spring stiffness, Lisgo is the unloaded spring length, Figgo is

the spring pretension and p is the unit vector of p, such
that p=p/|p|.

Mi,ex = 5i,.]25 Fi,spg (20)

Fisg = _(ki,ex(Li,spg - '-i,spg,O)Jr Fi,spg,O)Ri-l Pl g (21)
The bending of the joint i compression spring generates a
moment Mg, normal to the bending plane. The deflection
magnitude f;jn is calculated using Eq. 22 as the angle between
the link i-1 z-axis (z/7) and the link i z-axis (zj* = R/'z] ). The
cross-product between these axes divided by the sine of iy
defines the normal along which Mg, acts, leading to Eq. 23,
where K, is the bending stiffness. The small angle assumption
is used to avoid the singularity when ;. = 0—for less than 5°,
SN, i = B, j- Given the definition of the normal, Eq. 22 is

solved for a value of S j,; within the range [0, /2].
B, jn = acos ((zi‘j)T Ri"lzi‘) (22)
vi. - {— K o0, jniF_z.i_l(ﬁ_i‘j_rz;'lz; VsinB e B> 5:
kR (2R B <5
Several effects that lead to energy loss in the subsegment

(spring deformation, contact friction at the joints, etc.), are
lumped into a single dampening parameter dependent on the

joint i bending velocity ,B'i‘jm. This velocity is defined by the x-

(23)

and y- components of wi‘jii (defined in Eq. 15) by neglecting
the z-component (which is associated with the link’s roll
velocity), as shown in Eq. 24. The resulting M; ¢mp is defined in
Eq. 25 using o'} where Cigmp is the joint dampening

i-1i,8"
parameter.
Bim=le ] ot =ldi. @i, of (24)
Mi,drrp =—Ciamp Ri—lw::ii'ﬁ (25)

The joint limiter will be modeled as a nonlinear spring-
dampener that engages when fijn > fiim. Equation 26 defines
M where Kijim and Cijim are the non-linear, f;j-dependent
joint-stop stiffness and dampening. Equations 27 and 28 define
Kiim and Cj i to ensure M remains continuous at i jnt = Bim,

where kg and ¢, are constants.

i,lim?

i,lim

M, =R, - ki,lim(ﬁi,jnt _ﬂlimxzil-i R’ Zil)/smﬂi,jnt (26)
' _Ci,lirrF”ilii”g
0’ ﬂi jnt < ﬂlim
ki,lim(lBi,jnt):{kO, ﬁi'jm > B 27
_ O’ ﬁ,i,jnt < ﬁlim
Ci,lim(lBi,jnt)_ {Cl '(ﬂi,jnt _IBIim)’ ﬂi,jnt > ﬂlim (28)

The cable tension T;, of cable j terminating in segment k
will contribute to M; . according to Eq. 29. By definition, for
the cables terminating in segment 1 at disk 3, the cable tensions
in subsegments 4, 5 and 6 are zero, as defined in Eq. 30.
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_5i'“2H FA)ivJ',HzH (29)

1M
=
%
%4
<
3

= {4,5,6 , (30)

2.2.3 Solving the Equations of Motion

The dynamic model presented takes the form of a set of
differential-algebraic equations (DAEs): the differential
variables are the 12 joint angles (¢; and ;) and the algebraic
variables are the four non-zero cable tensions (Tjy). If these
DAEs are formulated to be linear in the joint accelerations and
cable tensions, they can be solved with a conventional ordinary-
differential equation (ODE) solver.

However, the cable length constraint defined in Eqg. 3 is
independent of the joint accelerations. Without loss of
generality, this expression may be differentiated twice and
utilized as the starting point for a constraint, shown in Eq. 31.
j={2}or{2,3or {31} 1)
k={,2}

However, to ensure that the numerical simulation preserves
the cable displacement and cable velocity constraints, penalty
functions are added to Eq. 31, as shown in Eq. 32, where K, and
K, are the weights on the cable displacement and velocity
errors, respectively. If this expression is integrated without
errors in displacement or velocity, it is equivalent to Eq. 31.

5J,k,des 5] k __Kp<51,k,des 5J,k) K (51 k,des 5] k) (32)
Using Eq. 32 to formulate the cable length constraints, the
DAEs take the form shown in Eq. 33. In order to formulate the
A and B matrices, the inertial loading and cable accelerations
should be formulated into ¢ -dependent terms ( M. g and

S, yses—Oji =0

j.k,des

i,inr,dep
Jkdepq) and ¢ -independent terms (M inring and 5cha,cmd) as
shown in Eq. 34.

2
A, O |T B,
M q+M||nr|ndl

iinr = | inr,dep

Ojy = j,k,depq +51,k,ind
The first block row of Eq. 33 (A, A, and By) are the 12
joint equilibrium equations defined in Eq. 1. Formulations for
these matrices are provided in Eqs. 35-37, where r is the row
index and c is the column index. The indices j and k in Eq. 36
are calculated from the column index—each element of T
corresponds to a specific cable j terminating in segment k.

perinre 1<r<6
Au(r)= e (35)
yrGM

7<r<12

(34)

r-6,inr,dep

.
=M e <6 ;
,C)= v k=1 36
)| e JEL i) o

B,(r1)= P (Mr,el +M, gy — M,,in,,ex) 1<r<6 @
YIG(M r-6,el +M -M <r<12

r-6,grv r-6,inr,ind -

The second block row of Eq. 33 (A,; and B,) are the 4
cable acceleration equations defined in Eq. 32. Formulations for
these matrices are provided in Egs. 38 and 39. Similar to Ay,
the indices j and k in each term are calculated from the row
index—each element of T corresponds to a specific cable j
terminating in segment k. However, these mappings are not
required to be the same (displacements can be specified for a
different set of cables than those tensioned).

An(r)=0 saepr [1sk]= Tlr) (38)
5j,k,des + Kp(gj‘k,des _5j,k)
+ Kv(gj,k,des _5j,k)_5j,k,ind

Because the A matrix is non-singular, the linear system in
Eq. 33 may be solved for ¢ and T. This provides a means of

calculating g as a function of t, g and ¢, allowing for

implementation of the dynamics solver in a standard MATLAB
ordinary differential equation solver (such as ODE45).

A formulation for the statics may also be constructed by
ignoring inertial loading. The model’s governing equations are
defined using Eq. 40, where B in this case is defined in Eq. 41.
Instead of solving a set of ODEs, a set of nonlinear algebraic
equations is solved for the vector of 12 joint angles and four
non-zero cable tensions.

B=0 (40)

p: (Mr,grv +M, yspa + Mr,cbl) 1<r<
B(r!l): 716('\/'

B,(r1)= . [ik]=fn(r)  (39)

r-6,grv + Mr—G,USDA + Mr—e,cbl
S kdes— O 13<r<16

j.k,des

3 ELASTICITY OPTIMIZATION

Three of the most critical aspects of the tail’s design are the
length, mass distribution and tail elasticity. This section will
focus on tail elasticity and will consider methods to select
springs for a tail of given mass and length. Three approaches
will be considered: (1) zero-actuation-configuration, (2)
vertical-actuation-minimizing, and (3) horizontal-actuation-
minimizing.

These approaches will focus on the selection of extension
springs. The compression springs primarily ensure uniformity in
yaw-angle actuation—as long as the springs along the tail are
the same, this will remain true.

3.1 Considerations for Selecting Extension Springs

A practical concern for the selection of extension springs is
ensuring that the subsegment’s range of motion can be
accommodated by the spring. As discussed in section 2, a
mechanical joint stop is incorporated into each subsegment to
allow a maximum subsegment bend Sij: (EQ. 22) of fim. The
pitch and yaw angles associated with the minimum and
maximum spring lengths Lgy min @aNd Lep max are @i = £ fim and 6;
= 0 (Lspmin Occurs with positive fSin). Using Eg. 10, two
conditions for selecting extension springs are: (1) the unloaded
spring length Lig,q0 should be less than Lgmin, and (2) the
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maximum spring extension should be greater than Lgmax -
I—sp,min-

In addition, there are three parameters relevant to the
spring’s loading associated with the mechanical properties of a
spring: the undeformed length, the spring stiffness, and the
spring pre-tension. In this analysis, the undeformed spring
length will be prescribed, the pretension for the estimated
stiffness will be ignored, and the spring stiffnesses will be
solved for.

3.2 Simplified Prescribed Configuration Tail Model

For these analyses, a simplified model for the tail will be
used to assess the impact of elasticity on the actuation
requirements for a prescribed configuration g. The actuation
requirement will be quantified by analyzing the cable tensions
Tia and T;g in subsegment i cables A and B required to balance
the gravitational and USDA loading, shown in Eq. 42.

PiT Mi ak.col PiT Mi 5k cbi :I[ri,A} PiT (_ Mi,grv - Mi,USDA )} (42)

?iT M Ak chl 7iT Mi &bl Tis J’iT (_ M; g — Mi,USDA)

3.3 Zero-Actuation-Configuration

The simplest approach to optimize the spring parameters is
to select springs that prescribe a straight configuration of the
robotic tail in the absence of actuation. This allows for an
analytical calculation of the spring stiffnesses, given that g = 0
and T = Tig = 0. By definition, when & = 0, the yaw moments
associated with Mg, and M;yspa are both zero. Therefore, for
each joint i, a stiffness k; ¢x may be calculated to satisfy Eq. 43.

PiT M; uspa = _PiT Mi,grv (43)

3.4 Vertical-Actuation-Minimizing

For the two additional approaches to selecting spring
stiffness, the impact on subsegment cable tensions over a range
of configurations will be analyzed. This will provide
information on both how the net actuation for a given segment
changes along different configuration trajectories, as well as the
relative changes in actuation requirements between subsegments
within a given segment.

For the vertical-actuation case, the tail will move through a
prescribed set of configurations in the vertical x-z plane
between the tail’s extreme configurations from ¢; = —fn, t0 ¢; =
Pim as the parameter ¢ varies from 0 to 1. As shown in Ex. 44,
linear interpolation is used to create this vertical trajectory for
@; while 6; is held constant at zero.
2(6)=~Pin+ 2Bins. 6,=0 (44)

Like section 3.3, motion restricted to the vertical plane
inherently satisfies the yaw-joint equilibrium equations, leading
to an algebraic constraint between the two cable tensions. In
this analysis, the actuation cabling will be arranged so that in
the vertical actuation case, either only cable 1 is in tension (T;a
= Tiwt, Tig = 0) or cables 2 and 3 are both in tension with equal
magnitude (T;a = Tig = 0.5T; ). This results in a simplification

of Eq. 42 into Eq. 45 for this case. Furthermore, the subsegment
actuation requirement may be characterized by T .

T
[piTMi,A,k,cbl PiT Mi,B,k,cbI {TI'A:| :PiT (_ Mi,grv - Mi,USDA) (45)
i,B

Equations 46 and 47 define the parameters Tjmagw: and
Tigifrwrt USed to parameterize the segment | actuation magnitude
(Timagwry) and relative actuation requirements (T gifruri) foOr
subsegments 3I-2, 3I-1 and 3l. These parameters provide a
closed-form calculation that measures the variation between the
prescribed kinematic configuration and the actual equilibrium
configuration (subject to the same cable displacement inputs for
the kinematic and static models). Equations 46 and 47 define
Timagyrt and Ty girrure OVEr the domain of ¢, which parameterizes
the tail trajectory.

1 1
Tl,mag,vn = \/EJ‘(Tﬁ»Z,vn +T3%—1,vrt +T3?,vnbg (46)

0

T 1 (Tal-l,vn _Tal-z,vn)z +(T3I,vn _T3|-1,vn)2
1diff vt = —I

3% [+ (Tsl,vn _T3I-2,vrl)2

For a given segment |, there are three spring stiffnesses to
be optimized: Kaj.2ex, Kai-1ex @nd Kzjex, Which may be represented
in vector form as Ki.z):aiyex- USING Ty magurt @nd T gitryr, DOt OF
which depend on Ki.z)ai.exs @n Optimization can be constructed
to minimize the weighted sum of these parameters over the
three positive real-valued spring stiffnesses Ksi.z).i,ex, 8 shown
in Eq. 48. The weights wy; and wy, are chosen to balance the
relative importance of the magnitude and difference conditions.

min (Wk,lTk,mag ot T Wk,ZTk,diff,vrt)

dg 47

(48)

+

K(ak-2)(3k)ex € (R )3

3.5 Horizontal-Actuation-Minimizing

The parameterized horizontal tail trajectory is defined in
Eq. 49. Unlike the vertical plane motion, both the pitch- and
yaw-joint equilibrium conditions defined in Eq. 42 will be
utilized to calculate the two subsegment i cable tensions T; , and
Tips. For these simulations, A will remain 1, and B will vary
between 2 and 3, depending on the direction of bending.
Furthermore, because of the mechanism’s symmetry, only the
angles in the range 0 < 6, < B, are considered.
=0, 6, =Pins (49)

Parameters Tyjmag and Tjas for the magnitude and
difference conditions for cable j in segment | are defined in Egs.
50-51. An optimization similar to Eq. 48 is constructed in Eq.
52 using the four parameters for a given segment k.

1t
T\ jmag.e = \/gj-(T;—z,j,hrz +T3?—1,j,hrz +T3?,j,hrz )dg (50)

0
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(T3I1 j,hrz _T3I 2,§, hrz)Z

Tl,j,diff,hrz = J. (Tal jhz 3|1 i, hrz)z dg (51)
+(T3I jhz T 3I2]hrz)2
min Z(leivlTI,j,mg,hrz +W|,j,zT|,j,diff,hrz)

i=AB (52)
k(3|—2)(3|),ex < (R+)3

4 RESULTS

This section utilizes the mechanical models (static and
dynamic) and spring optimization cases to analyze a robotic tail
structure. Simulation properties are defined in section 4.1, and
the optimal spring stiffnesses are analyzed and calculated in
section 4.2. Then, in sections 4.3 and 4.4, the quasi-static and
dynamic trajectories of the tails are compared to analyze the
impact inertial loading has on the tail performance.

4.1 Simulation Properties

Table 1 defines various properties of the robotic tail under
consideration extracted from a preliminary CAD design of the
tail. These properties are either themselves utilized in the model
definitions of previous sections, or will be utilized in this
section to define additional properties.

The body-frame extension spring anchor positions p1DZS

are defined in Eq. 53. The p;p,s z-coordinate is chosen such
that the ‘base’ spring anchor vertically aligns with the universal
joint center; the p;p,s z-coordinate is adjustable. The x-

coordinates are different to accommodate the spring anchors of
both joints i-1 and i on disk i. For these simulations, L; g0 and
Fispgo are equal for each joint i to allow the spring stiffness to
quantify the different extension spring loading requirements.
p:{,-]IE)ZS - [30 0 5]T mm p2 D2s — [20 O _lO]T mm (53)
A formulation for the k; ¢, of a helical compression spring is
defined in Eq. 54, where E,, and G are the spring’s Young’s
and shear moduli, I is the spring wire’s cross-sectional second-
moment of area, ng, is the number of turns of the coil bending
and re, is the spring’s helical radius [18].
ki,Cp = 2Ee Gexlex/ﬁn ex EX (EEX + ZGEX) (54)
The three cable actuation routing holes are positioned at
radius ry and spaced 120° apart. The cable 1 routing hole is
defined to intersect the —x-axis in the local frame, leading to the
Table 1. Tail properties.

formulation for p,, in Eq. 55.

Plu=mule, s, O, w=120"(j-1)+180° (55)

4.2 Elasticity Optimization Results

The three approaches for generating extension spring
stiffnesses were implemented in MATLAB and the results are
shown in Table 2. The zero-actuation-configuration solver
(section 5.3) utilized the ‘fsolve’ function to calculate the six
stiffnesses required to solve the six scalar equations defined in
Eq. 43. The vertical- and horizontal-actuation-minimizing
optimizations are solved in two ways: an unconstrained
optimization (using ‘fminunc’) without limits on the spring
stiffnesses, and a constrained optimization (using ‘fmincon’)
with a lower bound on each spring stiffness (kiex > 0). The
unconstrained optimizations illustrate the ‘optimal’ spring
configuration, in which a negative stiffness denotes the
extension spring should be below the universal joint, instead of
above.

The stiffnesses for the zero-actuation-configuration and
vertical-actuation-minimizing  approaches  represent  two
extremes, and the horizontal-actuation-minimizing strikes a
balance between the two. As a result, the stiffnesses associated
with the horizontal-actuation-minimizing will be used in
subsequent simulations.

4.3  Static Tail Analysis

First, the configurations of the unloaded tail and the tail
when cable displacements are prescribed as zero are shown in
Fig. 4. Because the horizontal-actuation-minimizing set of
spring stiffnesses were chosen, the unloaded tail configuration
is not straight, but the actuation requirements to ‘straighten’ the
tail are minimal (for the zero-displacement in Fig. 4(b), 11.15 N
are required in segment 1 cables 2 and 3 and 2.33 N are
required in segment 2 cables 2 and 3.

For the simulations in sections 4.3 and 4.4, a set of
prescribed cable trajectories oy are generated from a ‘desired’
joint angle trajectory, both shown in Fig. 5.

As described in section 2.2.3, the static model is solved as
a set of 16 nonlinear equations for the 16 coordinates (12 joint
angles and 4 cable tensions); for the static tail trajectory, the
prescribed cable trajectories are calculated at a set of prescribed
timesteps, and the static model is solved at each timestep. To
speed-up calculations, the previous time step’s solution is used
as the initial guess for the current time step, and an estimate for
cable tensions is used at the first time step.

Ly Table 2. Calculated stiffnesses (units: N/m)
Lyc 72 mm Lo 75 mm Liion. 80 mm Horizontal Vertical
HZHO Joint | Zero-Act.
m; 759 Fispg,0 ON Lispgo | 38.1 mm Uncon. Con. Uncon. Con.
1 43.021e-12 1 44.337e-12 | 28.548e-12 1 1463.8 700.8 700.8 486.4 591.1
Jixx kg-m2 iy kg-m2 iz kg-m2 2 1040.4 527.7 527.7 119.9 224.6
= 210e9 Pa Gex 80e9 Pa I 8.06 mm 3 688.8 342.4 342.4 -123.3 0
97 | 2 136-12 m 0.1 4 409.0 131.8 279.6 -248.2 4.3
Ml ' & A28 M | Cidmp | N g/rad 5 200.9 -32.8 1151 | -286.1 0
i 325 mm 6 64.6 -156.9 0 -279.8 0
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Figure 4. (a) Unloaded tail configuration (no applied
displacements or cable forces, (b) Tail configuration with
prescribed zero displacement.

Figure 6 illustrates the static trajectories for the ¢- and 6-
joint angles (Figs. 6(a) and 6(b), respectively) compared to the
kinematic trajectories in Fig. 5(a). There is a strong correlation
between the kinematic and static #-joint trajectories, but there is
variation in the g-joint trajectories, particularly in segment 1.
This is due to the variation in gravitational loading along the
segment as the segment bends. The cable displacement
constraints effectively set the sum of the pitch angles along the
segment, but do not enforce that the individual joint angles be
equal, as shown. Trigonometric nonlinearities also lead to the
sum of these angles to be nonzero, despite the fact that the sum
of the desired joint angles is zero in the pitch direction.

Figure 7 illustrates the cable tension trajectories during the
static tail trajectory. Due to the symmetry of the mechanism
across the x-z plane, the tension profiles are symmetric across
the 0.25 s vertical line, with the tensions in cables 2 and 3
switched across this boundary. As the central compression
springs are the same for all six joints, the segment 2 cable
tensions carry most of the load in the six subsegments, as the
tensions from the segment 2 cables are applied to segment 1 as
the cables route through this segment. To reduce the static
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Time (s) Time (s)
Figure 5. (a) ‘Desired’ kinematic USRT joint angle trajectory.
(b) Prescribed cable displacement trajectories calculated
from desired joint angle trajectories.
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Figure 6. Static joint angle trajectories (a) ¢-joints, (b) 6-
joints.

actuation requirements of the segment 2 motors, the stiffness of
the compression springs in segment 2 can be reduced. If the
spring stiffnesses in segment 1 are not also reduced, this will
increase the static loading requirement of segment 1.

4.4 Dynamic Tail Trajectories

Figures 8 and 9 illustrate the dynamic trajectories for the ¢-
joint (Fig. 8) and 6-joint (Fig. 9). A significant variation in the
dynamic 6-joint trajectories is seen in Fig. 9 in comparison to
the static 6-joint trajectories in Fig. 6(b). This variation is
primarily due to the difference in the effective inertia at each
joint. For example, when the tail is fully extended (all joint
angles equal zero), the x-axis inertia (l,,) at joint 1 is 0.0420 kg-
m?, whereas for joint 3 the inertia is 0.0136 kg-m?. As a result,
given the same cable tension applied in each segment (assuming
the segments start in the same initial configuration), joint 3 will
show greater angular acceleration than joint 1.

As the trajectory evolves, the elastic springs help to balance
the acceleration between the joints, but because the
compression springs have equal stiffness, this requires disparity
in the segment’s joint angles. Furthermore, as the joint angles
change, the transmission efficiency between the cable and joint
changes, also affecting the relative actuation loading. Once an
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Figure 7. Static trajectory cable tensions.
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Figure 8. p-joint dynamic trajectories: (a) segment 1, (b)
segment 2.
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Figure 9. 0-joint dynamic trajectories (a) segment 1,
(b) segment 2.
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individual universal joint reaches its joint stop, the modeled
nonlinear spring will prevent further bending in that
subsegment, causing the remaining segments to bend further.

Figure 10 illustrates the cable tensions during the dynamic
trajectory. Like the joint angle trajectories, there are significant
variations compared to the static cable tensions for the same
trajectory in Fig. 7. For the segment 2 tensions in Fig. 10(b),
although the topology of the figure is similar, the time at which
the cable tension shifts from cable 2 to cable three has shifted
by 0.05 sec (a 20% shift relative to the static value). The
compression spring loading is used to overcome the inertial
loading by reducing the cable tension constraining the bent
spring. However, once zero tension is reached in cables 1 and 2,
cables 1 and 3 are required to ‘pull’ the segment toward the
desired final configuration, overcoming the tension

For the segment 1 tensions in Fig. 10(a), the topology
changed. In Fig. 7(a), the cable tensions primarily acted against
pitch angle variations, given the equal cable tensions in cable 2
and 3 in the initial and final sections of the trajectory, and the
dominant tension in cable 1 in the middle section. However, in
Fig. 10(b), the cable tensions must contribute significantly to
overcoming the increased segment 1 joint inertias compared to
segment 2 as discussed above. Therefore, to accelerate the
segment, cables 1 and 3 are tensioned in the first section of the
trajectory, and to decelerate the segment cables 1 and 2 are
tensioned in the second section of the trajectory. In addition, the
peaks present in the force loading profile correlate to points at
which the joint limit is hit in Fig. 9(a).

5 CONCLUSION

This paper has focused on the design concept and
associated mechanical model of a novel robotic tail composed
of a serial chain of universal-joints, actuated by cables and
supported by elastic springs along the structure. A dynamic
model in the form of coupled differential-algebraic equations
was derived, along with a static model composed of nonlinear
algebraic equations. Three approaches for optimizing spring
stiffnesses were presented, along with results comparing the
kinematic, static and dynamic trajectories (joint angle and
tension) associated with the prescribed cable displacements.

The robotic system described in this work will be used to
study the effectiveness of a robotic tail in maneuvering and
stabilizing mobile robots, particularly legged robots. Future
work will focus on the integration of a USRT for experimental
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Figure 10. Dynamic cable trajectories: (a) segment 1,
(b) segment 2.

validation of the dynamics model and the proposed tail
functionalities. In parallel with this experimental work, methods
of sensing, state estimation and tail control for the robotic tail
will also be studied and implemented. Planned improvements
for the USRT dynamic model include accounting for friction
losses along the actuation cabling and considering the other
mechanical effects that may be introduced due to additional
structures for sensing.
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