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ABSTRACT 
This paper presents a novel robotic tail design that utilizes 

a serial chain of universal joints to generate spatial motion. In 

nature, animals utilize their tails to assist in maneuvering and 

stabilization while moving; this research aims to provide a 

robotic platform capable of extending these functionalities to a 

mobile robot. By utilizing a tail to assist in stabilization and 

maneuvering, the required functionality of other locomotion 

mechanisms in a mobile robot, such as legs, is reduced. The tail 

mechanism presented is actuated by sets of three cables routed 

along the robotic structure; quasi-independent segments within 

the tail are created by tying off a set of three cables to a link 

along the tail. Actuation is distributed within the underactuated 

mechanism by compression and extension springs mounted 

along the tail. Kinematic and dynamic analysis of the tail is 

performed to model the tail trajectory and predict the actuation 

requirements. Three methods of optimizing spring stiffnesses 

are provided that weigh different performance goals, and a 

methodology for using these results to select spring stiffnesses 

is provided. Results are generated to compare the kinematic, 

static and dynamic models to one another to analyze the impact 

the different loading effects have on the tail behavior. 

1 INTRODUCTION AND BACKGROUND 
A rich source of inspiration for robotics research in recent 

years has been bioinspired legged locomotion. However, the 

predominant focus on humanoid bipedal locomotion and leg-

focused approaches (design/task-planning/control) for 

stabilization and maneuvering ignore the prevalence of tail-like 

structures in nature to assist in these functionalities. 

The goal for including a tail-like structure on-board a 

mobile robot is to assist in the system’s propulsion, 

maneuvering, stabilization and/or manipulation. This could be 

used to help augment an existing robot’s functionality, or to 

offset the functionality required of another locomotion 

mechanism. For example, in a legged robot, the tail could be 

used to help turn the system while walking or running [1] and to 

balance the robot in response to an external disturbance. This 

would allow the legs to primarily serve as a means of 

propulsion within the system, reducing their required 

complexity. 

Previous research into robotic tails has primarily focused 

on single-degree of freedom pendulum-like structures that 

provide a single functionality, such as propulsion [2], 

stabilization [3] or maneuvering [4]. Examples of multi-

functional tails presented in the literature include 

propulsion/maneuvering [5] and maneuvering/self-righting [6]. 

However, in order to justify the inclusion of a robotic tail on-

board a legged robot, it should be capable of both reducing the 

required complexity in the legs and significantly enhancing 

functionality.  

In addition, hyperredundant robotic structures more closely 

resemble tails observed in nature than simple pendulums. Two 

subsets of this class of robots are continuum and serpentine 

robots [7]. Continuum robots are defined by the continuous 

deformation of the robotic structure, instead of discrete 

displacements at defined joints [8]. These structures are 

primarily utilized on the meso-scale for medical procedures [9], 

although macro-scale manipulators have also been 

demonstrated [10]. Serpentine robots are typically composed of 

several identical rigid-link modules. These structures 

approximate continuous deformation with their serial chain of 

similar, compact links. These structures are primarily used as 

snake-like mobile robots [11], but have also been demonstrated 

as robotic manipulators [12]. 

A key challenge in adapting hyperredundant structures for 

use as a robotic tail is the need for cantilevered mounting of 

dynamic robotic structures. Previous macro-scale 

hyperredundant robots have either been high stiffness [13], 

which limits dynamic performance, or designed to be vertically 
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Figure 2. USRT subsegment with compression and 

extension elastic springs. 

mounted [14], in which the structure hangs to reduce the 

moment induced by gravity in the joints. The significant effect 

of the tail’s mass acting over relatively large distances from the 

base tends to cause large amount of ‘sag’ in elastic structures, or 

requires significant actuation to support it.  

When considering the actuation of hyperredundant robots, 

two key challenges arise: (1) how to apply loading along the 

length of the structure, and (2) how to distribute that loading 

between redundant joints. In terms of challenge (1), a common 

approach is to utilize cable-driven actuation. The key benefit of 

cable-driven actuation is the ability to localize actuators at the 

base of the robot, reducing the minimum mass and size of the 

tail structure.  

In terms of distributing actuation, two fundamental 

approaches may be considered: rigid, kinematic coupling or 

flexible, mechanical coupling. Rigid, kinematic coupling 

explicitly reduces the number of DOF of a hyperredundant 

mechanism by constraining the relative motion of adjacent 

joints, using structures such as gears or four-bar mechanisms. 

Flexible, mechanical coupling maintains the distinct DOF in 

various joints, but provides a means to re-distribute loading 

between links using elastic springs.  

This paper focuses on a novel design approach for a 

robotic tail utilizing the second approach to distributing 

actuation (flexible, mechanical coupling; prior work has 

explored rigid, kinematic coupling [15,16]). It refines and 

extends the design concept and model presented in [17] to 

consider dynamics and spatial motion. The resulting design is 

called the Universal-Spatial Robotic Tail (USRT)—universal 

for its use of universal joints between links and spatial for its 

inherent spatial workspace. Section 2 details the design concept 

and dynamics model for the USRT. Section 3 presents methods 

of optimizing spring stiffness along the tail structure. Section 4 

utilizes simulation results from these models to analyze tail 

performance. Section 5 summarizes the research and discusses 

planned future work, including experimental validation and 

joint-consideration of the tail with a legged robotic platform. 

2 MECHANICAL DESIGN & DYNAMICS MODEL 
This section presents the mechanical design concept for the 

universal-spatial robotic tail (USRT) and details the derivation 

of the design’s dynamic model.  

2.1 Design Concept 
Figure 1 shows the USRT design concept. Six disks are 

serially connected from a base link through universal joints to 

allow relative pitch and yaw rotations between the disks while 

constraining relative roll. Each joint subsegment is designed 

with a joint stop to limit net bending in any given direction to a 

fixed angle. The tail is subdivided into two quasi-independent 

segments by six cables routed along its length. Three cables tie 

off at disk 3, and three cables tie off at disk 6. 

The six cables are controlled by six motors. During 

operation, two of these cables will be tensioned, and the third 

will passively ‘follow’ the tail trajectory to maintain a negligible 

tension. This allows switching between which subset of two 

cables are tensioned during operation.  

Actuation is distributed along the tail by elastic springs. As 

shown in Fig. 2, two types of springs are utilized: compression 

and extension. A compression spring is mounted around each 

universal joint to resist displacement from the straight 

configuration. The primary function of this spring is to 

distribute angular displacement when bending horizontally (i.e., 

yaw angles). An extension spring is mounted vertically above 

the compression spring in each subsegment and compensates 

for the induced moment due to gravity in the universal joint.  

2.2 Dynamics Model 
The tail’s dynamics model will have 4 control inputs and 

16 state variables. The 4 inputs are cable displacements: two for 

a pair of cables tying off at disk 3, and two for a pair of cables 

tying off at disk 6. These cable displacements will typically be 

the cables that are also in tension, but this is not a requirement. 

The 16 states are the 12 joint angles and the 4 cable tensions. 

The 12 joint angles correspond to the six pitch angles and six 

yaw angles that define the configurations of the six universal 

joints. The four cable tensions correspond to two positive 

tensions applied on cables at the base for each segment. 

In order to calculate the trajectories of these 16 states, 16 

governing equations are needed. Twelve of these equations 

come from joint equilibrium—a property of revolute joints is 

that they cannot support a moment aligned with their axis of 
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Figure 3. USRT subsegment with compression and 

extension elastic springs. 

rotation. Given that a universal joint is composed of two 

orthogonal revolute joints, these governing equations can be 

calculated using Eq. 1, where ρi and γi define the joint i pitch- 

and yaw-axis unit vectors, respectively, and Mi,jnt defines the net 

joint i moment at the universal joint center. As shown in Eq. 2, 

four loading effects will be included in Mi,jnt for the dynamic 

model: inertia (Mi,inr), gravity (Mi,grv), universal-joint spring-

dampener-actuator (USDA) (Mi,USDA) and cable (Mi,cbl); if Mi,inr 

is neglected, the dynamic model becomes a static model.  
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The remaining four governing equations come from driving 

constraints that ensure the tail’s joint angles generate cable 

routing paths that match the desired cable displacement. For 

cable j terminating in segment k, this condition is defined by 

Eq. 3, where δj,k,des and δj,k are the desired and calculated cable 

displacements. 

0,,,  deskjkj   (3) 

This formulation of the mechanics model accounts for the 

two classes of loading along the tail—external and internal—in 

different ways. The external loading (gravity and inertia) 

depends on the sources of that loading ‘downstream’ of the joint 

under consideration. For example, joint 3 will account for the 

inertial loading and gravitational forces of disks 3-6. The 

internal loading (elasticity and cabling) accounts for forces and 

moments acting between two disks. Since the loading on 

adjacent disks is equal and opposite, the loading only affects the 

universal joint between those two disks. 

2.2.1 Kinematic Analysis 
Equation 4 defines the orientation matrices Ri of the disks 

from body 0 (the actuation module) to body 6, where I is the 

identity matrix; φi and θi are the universal joint i pitch- and yaw-

joint angles, respectively; RY(φ) is a y-axis rotation by angle φ; 

and RX(θ) is an x-axis rotation by angle θ. Using these rotation 

matrices, the joint axes ρi and γi may be defined using Eq. 5, 

where i

iy  and i

ix  are the i frame y- and x-axis unit vectors, 

respectively, defined in the i frame. By convention, in this 

analysis, a superscript denotes the frame in which a vector is 

defined; if a superscript is omitted, it is defined with respect to 

the ground frame. 
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For gravitational and inertial loading, the global-frame 

positions pi,j,J2C from joint i to the link j center-of-mass (COM) 

are required. To aid in this calculation, the joint positions pi,jnt 

and link COM positions pi,COM are calculated in Eqs. 6 and 7, 

where LJ2J is the distance between adjacent universal joint 

centers, i

iz  is the i frame z-axis unit vector defined in the i 

frame, and LJ2C is the distance from joint i to the link i COM. 

Using these, pi,j,J2C is calculated using Eq. 8. These kinematic 

variables and others in the following analysis are illustrated in 

Fig. 3. 
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For both the USDA and cable loading in subsegment i, 

calculations require the relative position 1

2,

i-

DDip  between the 

disk centers i-1 and i in the link i-1 frame. This is defined in Eq. 

9, where LD2J,0 is the distance from the disk 0 center (i.e., the 

centroid of the three cable routing holes in the actuation 

module) to joint 1, and LJ2D is the distance from joint i to the 

disk i center.  
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For the USDA loading, the position vector 1

,

i-

spgip  of the 

subsegment i extension spring and associated deformed spring 

length Li,spg are calculated using Eq. 10, where i

SDk 2,p is the side 

k spring mounting position in the disk-frame and a  denotes 

the 2-norm of a. In addition, a vector pi,J2S from joint i to the 

subsegment i extension spring mount at disk i is defined in Eq. 

11. 
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For actuation loading, the relative position 1

2,,

i-

HHjip  of the 
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cable j routing holes between disks i-1 and i is defined in Eq. 

12, where i

hlj ,p is the position vector from the disk i center to 

the disk i routing hole j defined in the disk-frame. This is used 

to calculate the segment k cable j displacement δj,k using Eq. 13, 

where LH2H,0 is the distance between adjacent routing holes 

when the universal joint angles are zero. The position pi,j,J2H 

from joint i to the link i cable j routing hole is defined in Eq. 14.  
i
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The inertial loading also requires analysis of the tail’s 

linear and angular velocities and accelerations. The links’ 

angular velocities ωi are defined in Eq. 15, where x  denotes the 

first derivative with respect to time of x. The angular 

accelerations αi, linear velocities vi,jnt and vi,COM, and linear 

acclerations ai,jnt and ai,COM may be found by differentiating Eqs. 

7, 8 and 15.  
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2.2.2 Loading Analysis 
The gravitational moment Mi,grv at joint i is due to the 

gravitational forces associated with disks i through 6. Equation 

16 defines Mi,grv, where mj is the disk j mass, g is gravitational 

acceleration, x is the global frame unit vector, and Fp~  denotes 

the cross product Fp . 
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6

,2,,, ,~  (16) 

Like gravity, the inertia of links i through 6 will contribute 

to the joint i inertial moment. Equation 17 quantifies this 

relationship, where Fj,inr,b and Mj,inr,b are the body j inertial force 

and moment. They are defined in Eq. 18, where j

jI  is the body-

frame inertia tensor for link j. 
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The joint i USDA moment Mi,USDA, defined in Eq. 19, 

represents the net moment acting at the joint due to four sources 

of loading in each subsegment: the extension spring (Mi,ex), the 

compression spring (Mi,cp), the joint dampening (Mi,dmp) and the 

joint angle limit (Mi,lim). 

i,limdmpicpiexiUSDAi MMMMM  ,,,,  (19) 

The subsegement i extension spring generates a force Fi,spg 

that contributes to Mi,ex, defined in Eq. 20. Fi,spg is defined for 

the subsegment i extension spring in Eq. 21, where ki,ex is the 

spring stiffness, Li,spg,0 is the unloaded spring length, Fi,spg,0 is 

the spring pretension and p̂  is the unit vector of p, such 

that ppp ˆ .  

spgiSJiexi ,2,,

~ FpM   (20) 

   1

,10,,0,,,,,
ˆ i-

spgii-spgispgispgiexispgi FLLk pRF   (21) 

The bending of the joint i compression spring generates a 

moment Mi,cp normal to the bending plane. The deflection 

magnitude βi,jnt is calculated using Eq. 22 as the angle between 

the link i-1 z-axis ( 1

1

i-

i-z ) and the link i z-axis ( i

i

i-

i

i-

i zRz
11  ). The 

cross-product between these axes divided by the sine of βi,jnt 

defines the normal along which Mi,cp acts, leading to Eq. 23, 

where ki,cp is the bending stiffness. The small angle assumption 

is used to avoid the singularity when βi,jnt = 0—for less than 5°, 

jntijnti ,,sin   . Given the definition of the normal, Eq. 22 is 

solved for a value of βi,jnt within the range [0, π/2]. 
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Several effects that lead to energy loss in the subsegment 

(spring deformation, contact friction at the joints, etc.), are 

lumped into a single dampening parameter dependent on the 

joint i bending velocity jnti, . This velocity is defined by the x- 

and y- components of 1

,1





i

iiω  (defined in Eq. 15) by neglecting 

the z-component (which is associated with the link’s roll 

velocity), as shown in Eq. 24. The resulting Mi,dmp is defined in 

Eq. 25 using 1

,,1

i-

ii- 
ω , where ci,dmp is the joint dampening 

parameter.  
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The joint limiter will be modeled as a nonlinear spring-

dampener that engages when βi,jnt > βlim. Equation 26 defines 

i,limM , where ki,lim and ci,lim are the non-linear, βi,jnt-dependent 

joint-stop stiffness and dampening. Equations 27 and 28 define 

ki,lim and ci,lim to ensure i,limM  remains continuous at βi,jnt = βlim, 

where k0 and c1 are constants. 
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The cable tension Tj,k of cable j terminating in segment k 

will contribute to Mi,act according to Eq. 29. By definition, for 

the cables terminating in segment 1 at disk 3, the cable tensions 

in subsegments 4, 5 and 6 are zero, as defined in Eq. 30. 
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2.2.3 Solving the Equations of Motion 
The dynamic model presented takes the form of a set of 

differential-algebraic equations (DAEs): the differential 

variables are the 12 joint angles (φi and θi) and the algebraic 

variables are the four non-zero cable tensions (Tj,k). If these 

DAEs are formulated to be linear in the joint accelerations and 

cable tensions, they can be solved with a conventional ordinary-

differential equation (ODE) solver.  

However, the cable length constraint defined in Eq. 3 is 

independent of the joint accelerations. Without loss of 

generality, this expression may be differentiated twice and 

utilized as the starting point for a constraint, shown in Eq. 31. 
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However, to ensure that the numerical simulation preserves 

the cable displacement and cable velocity constraints, penalty 

functions are added to Eq. 31, as shown in Eq. 32, where Kp and 

Kv are the weights on the cable displacement and velocity 

errors, respectively. If this expression is integrated without 

errors in displacement or velocity, it is equivalent to Eq. 31. 
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Using Eq. 32 to formulate the cable length constraints, the 

DAEs take the form shown in Eq. 33. In order to formulate the 

A and B matrices, the inertial loading and cable accelerations 

should be formulated into q -dependent terms ( qM 
depinri ,,  and 

q
depkj ,, ) and q -independent terms (Mi,inr,ind and indcalckj ,,, ), as 

shown in Eq. 34. 
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The first block row of Eq. 33 (A11, A12 and B1) are the 12 

joint equilibrium equations defined in Eq. 1. Formulations for 

these matrices are provided in Eqs. 35-37, where r is the row 

index and c is the column index. The indices j and k in Eq. 36 

are calculated from the column index—each element of T 

corresponds to a specific cable j terminating in segment k. 
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The second block row of Eq. 33 (A21 and B2) are the 4 

cable acceleration equations defined in Eq. 32. Formulations for 

these matrices are provided in Eqs. 38 and 39. Similar to A12, 

the indices j and k in each term are calculated from the row 

index—each element of T corresponds to a specific cable j 

terminating in segment k. However, these mappings are not 

required to be the same (displacements can be specified for a 

different set of cables than those tensioned). 

     rfnkjr depkj  ,,:, ,,21 A  (38) 
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Because the A matrix is non-singular, the linear system in 

Eq. 33 may be solved for q  and T. This provides a means of 

calculating q  as a function of t, q and q , allowing for 

implementation of the dynamics solver in a standard MATLAB 

ordinary differential equation solver (such as ODE45). 

A formulation for the statics may also be constructed by 

ignoring inertial loading. The model’s governing equations are 

defined using Eq. 40, where B in this case is defined in Eq. 41. 

Instead of solving a set of ODEs, a set of nonlinear algebraic 

equations is solved for the vector of 12 joint angles and four 

non-zero cable tensions.  

0B  (40) 
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3 ELASTICITY OPTIMIZATION 
Three of the most critical aspects of the tail’s design are the 

length, mass distribution and tail elasticity. This section will 

focus on tail elasticity and will consider methods to select 

springs for a tail of given mass and length. Three approaches 

will be considered: (1) zero-actuation-configuration, (2) 

vertical-actuation-minimizing, and (3) horizontal-actuation-

minimizing.  

These approaches will focus on the selection of extension 

springs. The compression springs primarily ensure uniformity in 

yaw-angle actuation—as long as the springs along the tail are 

the same, this will remain true.  

3.1 Considerations for Selecting Extension Springs 
A practical concern for the selection of extension springs is 

ensuring that the subsegment’s range of motion can be 

accommodated by the spring. As discussed in section 2, a 

mechanical joint stop is incorporated into each subsegment to 

allow a maximum subsegment bend βi,jnt  (Eq. 22) of βlim. The 

pitch and yaw angles associated with the minimum and 

maximum spring lengths Lsp,min and Lsp,max are φi = ± βlim and θi 

= 0 (Lsp,min occurs with positive βlim). Using Eq. 10, two 

conditions for selecting extension springs are: (1) the unloaded 

spring length Li,spg,0 should be less than Lsp,min, and (2) the 
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maximum spring extension should be greater than Lsp,max - 

Lsp,min. 

In addition, there are three parameters relevant to the 

spring’s loading associated with the mechanical properties of a 

spring: the undeformed length, the spring stiffness, and the 

spring pre-tension. In this analysis, the undeformed spring 

length will be prescribed, the pretension for the estimated 

stiffness will be ignored, and the spring stiffnesses will be 

solved for. 

3.2 Simplified Prescribed Configuration Tail Model 
For these analyses, a simplified model for the tail will be 

used to assess the impact of elasticity on the actuation 

requirements for a prescribed configuration q. The actuation 

requirement will be quantified by analyzing the cable tensions 

Ti,A and Ti,B in subsegment i cables A and B required to balance 

the gravitational and USDA loading, shown in Eq. 42.  
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3.3 Zero-Actuation-Configuration 
The simplest approach to optimize the spring parameters is 

to select springs that prescribe a straight configuration of the 

robotic tail in the absence of actuation. This allows for an 

analytical calculation of the spring stiffnesses, given that q = 0 

and Ti,A = Ti,B = 0. By definition, when θ = 0, the yaw moments 

associated with Mi,grv and Mi,USDA are both zero. Therefore, for 

each joint i, a stiffness ki,ex may be calculated to satisfy Eq. 43.  

grvi

T

iUSDAi

T

i ,, MρMρ   (43) 

3.4 Vertical-Actuation-Minimizing 
For the two additional approaches to selecting spring 

stiffness, the impact on subsegment cable tensions over a range 

of configurations will be analyzed. This will provide 

information on both how the net actuation for a given segment 

changes along different configuration trajectories, as well as the 

relative changes in actuation requirements between subsegments 

within a given segment. 

For the vertical-actuation case, the tail will move through a 

prescribed set of configurations in the vertical x-z plane 

between the tail’s extreme configurations from φi = ‒βlim to φi = 

βlim as the parameter ς varies from 0 to 1. As shown in Ex. 44, 

linear interpolation is used to create this vertical trajectory for 

φi while θi is held constant at zero. 

  0,2  ilimlimi   (44) 

Like section 3.3, motion restricted to the vertical plane 

inherently satisfies the yaw-joint equilibrium equations, leading 

to an algebraic constraint between the two cable tensions. In 

this analysis, the actuation cabling will be arranged so that in 

the vertical actuation case, either only cable 1 is in tension (Ti,A 

= Ti,vrt, Ti,B = 0) or cables 2 and 3 are both in tension with equal 

magnitude (Ti,A = Ti,B = 0.5Ti,vrt). This results in a simplification 

of Eq. 42 into Eq. 45 for this case. Furthermore, the subsegment 

actuation requirement may be characterized by Ti,vrt. 

 

   USDAigrvi

T

i

i,B

i,A

cblkBi

T

icblkAi

T

i
T

T
,,,,,,,, MMρMρMρ 








 (45) 

 

Equations 46 and 47 define the parameters Tl,mag,vrt and 

Tl,diff,vrt used to parameterize the segment l actuation magnitude 

(Tl,mag,vrt) and relative actuation requirements (Tl,diff,vrt) for 

subsegments 3l-2, 3l-1 and 3l. These parameters provide a 

closed-form calculation that measures the variation between the 

prescribed kinematic configuration and the actual equilibrium 

configuration (subject to the same cable displacement inputs for 

the kinematic and static models). Equations 46 and 47 define 

Tl,mag,vrt and Tl,diff,vrt over the domain of ς, which parameterizes 

the tail trajectory.  
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For a given segment l, there are three spring stiffnesses to 

be optimized: k3l-2,ex, k3l-1,ex and k3l,ex, which may be represented 

in vector form as k(3l-2):(3l),ex. Using Tl,mag,vrt and Tl,diff,vrt, both of 

which depend on k(3l-2):(3l),ex, an optimization can be constructed 

to minimize the weighted sum of these parameters over the 

three positive real-valued spring stiffnesses k(3l-2):(3l),ex, as shown 

in Eq. 48. The weights wk,1 and wk,2 are chosen to balance the 

relative importance of the magnitude and difference conditions.  
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3.5 Horizontal-Actuation-Minimizing 
The parameterized horizontal tail trajectory is defined in 

Eq. 49. Unlike the vertical plane motion, both the pitch- and 

yaw-joint equilibrium conditions defined in Eq. 42 will be 

utilized to calculate the two subsegment i cable tensions Ti,A and 

Ti,B. For these simulations, A will remain 1, and B will vary 

between 2 and 3, depending on the direction of bending. 

Furthermore, because of the mechanism’s symmetry, only the 

angles in the range 0 ≤ θi ≤ βlim are considered. 

 limii  ,0  (49) 

Parameters Tl,j,mag and Tl,j,diff for the magnitude and 

difference conditions for cable j in segment l are defined in Eqs. 

50-51. An optimization similar to Eq. 48 is constructed in Eq. 

52 using the four parameters for a given segment k.  
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Table 1. Tail properties. 
LJ2C 72 mm LJ2D 75 mm 

LJ2J, 

LH2H,0 

80 mm 

mi 75 g Fi,spg,0 0 N Li,spg,0 38.1 mm 

j

xxjI ,  
43.021e-12 

kg-m2 
j

yyjI ,  
44.337e-12 

kg-m2 
j

zzjI ,  
28.548e-12 

kg-m2 

Eex 210e9 Pa Gex 80e9 Pa rex 8.06 mm 

nex 2.7 Iex 2.13e-12 m4 ci,dmp 

0.1 

N-m-s/rad 

rhl 32.5 mm     

 

Table 2. Calculated stiffnesses (units: N/m) 
Joint Zero-Act. 

Horizontal Vertical 

Uncon. Con. Uncon. Con. 

1 1463.8 700.8 700.8 486.4 591.1 

2 1040.4 527.7 527.7 119.9 224.6 

3 688.8 342.4 342.4 -123.3 0 

4 409.0 131.8 279.6 -248.2 4.3 

5 200.9 -32.8 115.1 -286.1 0 

6 64.6 -156.9 0 -279.8 0 
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 (52) 

4 RESULTS 
This section utilizes the mechanical models (static and 

dynamic) and spring optimization cases to analyze a robotic tail 

structure. Simulation properties are defined in section 4.1, and 

the optimal spring stiffnesses are analyzed and calculated in 

section 4.2. Then, in sections 4.3 and 4.4, the quasi-static and 

dynamic trajectories of the tails are compared to analyze the 

impact inertial loading has on the tail performance. 

4.1 Simulation Properties 
Table 1 defines various properties of the robotic tail under 

consideration extracted from a preliminary CAD design of the 

tail. These properties are either themselves utilized in the model 

definitions of previous sections, or will be utilized in this 

section to define additional properties.  

The body-frame extension spring anchor positions 1

2,1

i-

SDp  

are defined in Eq. 53. The 1

2,1

i-

SDp  z-coordinate is chosen such 

that the ‘base’ spring anchor vertically aligns with the universal 

joint center; the 1

2,1

i-

SDp  z-coordinate is adjustable. The x-

coordinates are different to accommodate the spring anchors of 

both joints i-1 and i on disk i. For these simulations, Li,spg,0 and 

Fi,spg,0 are equal for each joint i to allow the spring stiffness to 

quantify the different extension spring loading requirements.  

    mm10020mm,5030 1

2,2

1

2,1

Ti-

SD

Ti-

SD  pp  (53) 

A formulation for the ki,cp of a helical compression spring is 

defined in Eq. 54, where Eex and  Gex are the spring’s Young’s 

and shear moduli, Iex is the spring wire’s cross-sectional second-

moment of area, nex is the number of turns of the coil bending 

and rex is the spring’s helical radius [18]. 

 exexexexexexexcpi GErnIGEk 22,    (54) 

The three cable actuation routing holes are positioned at 

radius rhl and spaced 120° apart. The cable 1 routing hole is 

defined to intersect the –x-axis in the local frame, leading to the 

formulation for i

hlj ,p  in Eq. 55. 

     1801120,0,  jscr
T

hl

i

hlj p  (55) 

4.2 Elasticity Optimization Results 
The three approaches for generating extension spring 

stiffnesses were implemented in MATLAB and the results are 

shown in Table 2. The zero-actuation-configuration solver 

(section 5.3) utilized the ‘fsolve’ function to calculate the six 

stiffnesses required to solve the six scalar equations defined in 

Eq. 43. The vertical- and horizontal-actuation-minimizing 

optimizations are solved in two ways: an unconstrained 

optimization (using ‘fminunc’) without limits on the spring 

stiffnesses, and a constrained optimization (using ‘fmincon’) 

with a lower bound on each spring stiffness (ki,ex > 0). The 

unconstrained optimizations illustrate the ‘optimal’ spring 

configuration, in which a negative stiffness denotes the 

extension spring should be below the universal joint, instead of 

above.  

The stiffnesses for the zero-actuation-configuration and 

vertical-actuation-minimizing approaches represent two 

extremes, and the horizontal-actuation-minimizing strikes a 

balance between the two. As a result, the stiffnesses associated 

with the horizontal-actuation-minimizing will be used in 

subsequent simulations.  

4.3 Static Tail Analysis 
First, the configurations of the unloaded tail and the tail 

when cable displacements are prescribed as zero are shown in 

Fig. 4. Because the horizontal-actuation-minimizing set of 

spring stiffnesses were chosen, the unloaded tail configuration 

is not straight, but the actuation requirements to ‘straighten’ the 

tail are minimal (for the zero-displacement in Fig. 4(b), 11.15 N 

are required in segment 1 cables 2 and 3 and 2.33 N are 

required in segment 2 cables 2 and 3. 

For the simulations in sections 4.3 and 4.4, a set of 

prescribed cable trajectories δj,k are generated from a ‘desired’ 

joint angle trajectory, both shown in Fig. 5. 

As described in section 2.2.3, the static model is solved as 

a set of 16 nonlinear equations for the 16 coordinates (12 joint 

angles and 4 cable tensions); for the static tail trajectory, the 

prescribed cable trajectories are calculated at a set of prescribed 

timesteps, and the static model is solved at each timestep. To 

speed-up calculations, the previous time step’s solution is used 

as the initial guess for the current time step, and an estimate for 

cable tensions is used at the first time step. 
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Figure 4. (a) Unloaded tail configuration (no applied 

displacements or cable forces, (b) Tail configuration with 
prescribed zero displacement. 

 
Figure 5. (a) ‘Desired’ kinematic USRT joint angle trajectory. 

(b) Prescribed cable displacement trajectories calculated 
from desired joint angle trajectories. 

 
Figure 6. Static joint angle trajectories (a) φ-joints, (b) θ-

joints. 

 
Figure 7. Static trajectory cable tensions. 

 
Figure 8. φ-joint dynamic trajectories: (a) segment 1, (b) 

segment 2. 
 

 
Figure 9. θ-joint dynamic trajectories (a) segment 1,  

(b) segment 2. 
 

Figure 6 illustrates the static trajectories for the φ- and θ-

joint angles (Figs. 6(a) and 6(b), respectively) compared to the 

kinematic trajectories in Fig. 5(a). There is a strong correlation 

between the kinematic and static θ-joint trajectories, but there is 

variation in the φ-joint trajectories, particularly in segment 1. 

This is due to the variation in gravitational loading along the 

segment as the segment bends. The cable displacement 

constraints effectively set the sum of the pitch angles along the 

segment, but do not enforce that the individual joint angles be 

equal, as shown. Trigonometric nonlinearities also lead to the 

sum of these angles to be nonzero, despite the fact that the sum 

of the desired joint angles is zero in the pitch direction.  

Figure 7 illustrates the cable tension trajectories during the 

static tail trajectory. Due to the symmetry of the mechanism 

across the x-z plane, the tension profiles are symmetric across 

the 0.25 s vertical line, with the tensions in cables 2 and 3 

switched across this boundary. As the central compression 

springs are the same for all six joints, the segment 2 cable 

tensions carry most of the load in the six subsegments, as the 

tensions from the segment 2 cables are applied to segment 1 as 

the cables route through this segment. To reduce the static 

actuation requirements of the segment 2 motors, the stiffness of 

the compression springs in segment 2 can be reduced. If the 

spring stiffnesses in segment 1 are not also reduced, this will 

increase the static loading requirement of segment 1.  

4.4 Dynamic Tail Trajectories 
Figures 8 and 9 illustrate the dynamic trajectories for the φ-

joint (Fig. 8) and θ-joint (Fig. 9). A significant variation in the 

dynamic θ-joint trajectories is seen in Fig. 9 in comparison to 

the static θ-joint trajectories in Fig. 6(b). This variation is 

primarily due to the difference in the effective inertia at each 

joint. For example, when the tail is fully extended (all joint 

angles equal zero), the x-axis inertia (Ixx) at joint 1 is 0.0420 kg-

m
2
, whereas for joint 3 the inertia is 0.0136 kg-m

2
. As a result, 

given the same cable tension applied in each segment (assuming 

the segments start in the same initial configuration), joint 3 will 

show greater angular acceleration than joint 1.  

As the trajectory evolves, the elastic springs help to balance 

the acceleration between the joints, but because the 

compression springs have equal stiffness, this requires disparity 

in the segment’s joint angles. Furthermore, as the joint angles 

change, the transmission efficiency between the cable and joint 

changes, also affecting the relative actuation loading. Once an 
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Figure 10. Dynamic cable trajectories: (a) segment 1,  

(b) segment 2. 

individual universal joint reaches its joint stop, the modeled 

nonlinear spring will prevent further bending in that 

subsegment, causing the remaining segments to bend further. 

Figure 10 illustrates the cable tensions during the dynamic 

trajectory. Like the joint angle trajectories, there are significant 

variations compared to the static cable tensions for the same 

trajectory in Fig. 7. For the segment 2 tensions in Fig. 10(b), 

although the topology of the figure is similar, the time at which 

the cable tension shifts from cable 2 to cable three has shifted 

by 0.05 sec (a 20% shift relative to the static value). The 

compression spring loading is used to overcome the inertial 

loading by reducing the cable tension constraining the bent 

spring. However, once zero tension is reached in cables 1 and 2, 

cables 1 and 3 are required to ‘pull’ the segment toward the 

desired final configuration, overcoming the tension 

For the segment 1 tensions in Fig. 10(a), the topology 

changed. In Fig. 7(a), the cable tensions primarily acted against 

pitch angle variations, given the equal cable tensions in cable 2 

and 3 in the initial and final sections of the trajectory, and the 

dominant tension in cable 1 in the middle section. However, in 

Fig. 10(b), the cable tensions must contribute significantly to 

overcoming the increased segment 1 joint inertias compared to 

segment 2 as discussed above. Therefore, to accelerate the 

segment, cables 1 and 3 are tensioned in the first section of the 

trajectory, and to decelerate the segment cables 1 and 2 are 

tensioned in the second section of the trajectory. In addition, the 

peaks present in the force loading profile correlate to points at 

which the joint limit is hit in Fig. 9(a). 

5 CONCLUSION 
This paper has focused on the design concept and 

associated mechanical model of a novel robotic tail composed 

of a serial chain of universal-joints, actuated by cables and 

supported by elastic springs along the structure. A dynamic 

model in the form of coupled differential-algebraic equations 

was derived, along with a static model composed of nonlinear 

algebraic equations. Three approaches for optimizing spring 

stiffnesses were presented, along with results comparing the 

kinematic, static and dynamic trajectories (joint angle and 

tension) associated with the prescribed cable displacements.  

The robotic system described in this work will be used to 

study the effectiveness of a robotic tail in maneuvering and 

stabilizing mobile robots, particularly legged robots. Future 

work will focus on the integration of a USRT for experimental 

validation of the dynamics model and the proposed tail 

functionalities. In parallel with this experimental work, methods 

of sensing, state estimation and tail control for the robotic tail 

will also be studied and implemented. Planned improvements 

for the USRT dynamic model include accounting for friction 

losses along the actuation cabling and considering the other 

mechanical effects that may be introduced due to additional 

structures for sensing. 
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