
GAUSSIAN KERNEL CONTROLLER FOR PATH TRACKING IN MOBILE ROBOTS

Bijo Sebastian
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA 24061

bijo7@vt.edu

Adam Williams
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA 24061

aw13@vt.edu

Pinhas Ben-Tzvi
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech
Blacksburg, VA 24061

bentzvi@vt.edu

ABSTRACT
This paper describes the design of a Gaussian kernel based path
tracking controller for mobile robots. In order to achieve
successful navigation under hybrid navigation architectures, it
is critical for the robot to follow the path provided by a high-
level planner even while moving between waypoints. This is
particularly difficult in real life situations involving robot
motion in challenging terrains. Existing controllers for this
purpose such as the pure pursuit does not ensure smooth
motion of the robot or accurate tracking while moving between
path segments. This paper describes the design of a controller
that can ensure accurate path tracking even in the presence of
disturbances, by utilizing the gradients of moving Gaussian
kernels. In order to characterize the performance of the
proposed controller, two different sets of simulations are
conducted. Based on the results of the simulations, the
Gaussian kernel controller ensures accurate tracking of the
provided reference path while addressing the shortcomings of
existing controllers. The paper concludes with a discussion on
future directions for improvement.

NOMENCLATURE

l Look ahead distance (m)

rG Radius of the goal region (m)

N Number of Path segments
 Center of the Gaussian
 Standard deviation for the Gaussian

G Gradient of the Gaussian

F Normalized 2D circular Gaussian

V Desired linear velocity of the robot (m/s)

maxV Maximum linear velocity of the robot (m/s)

 Desired angular velocity of the robot (rad/s)

pK Proportional gain

L Width of the Differential drive robot (m)

D Diameter of the wheels of differential drive robot (m)

l Angular velocity of the left wheel of the differential
(rad/s)

r Angular velocity of the right wheel of the differential
(rad/s)

1 INTRODUCTION
One of the most popular topics in robotics and control is the
exploration of various modes of autonomous navigation of
mobile robots. An effective strategy is the implementation of
hybrid navigation architecture, consisting of a deliberate high-
level planner followed by a reactive low level controller [1, 2].
The high-level planner takes into account the map of the
environment and develops a path to guide the robot to the goal.
The path is generally output as a set of waypoints leading to the
goal. The main responsibility of the reactive controller is to
drive the robot through these waypoints. In addition, the
reactive controller is also responsible for handling sudden
changes in the environment that may require the robot to
deviate from the path, or even execute an immediate stop. Such
behavior can be triggered by moving obstacles or even by
disturbances such as the slope of the terrain, slip or actuator
limitations of the robot that the planner failed to consider. In
order to handle these varied responsibilities, the reactive

Proceedings of the ASME 2018 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference

IDETC/CIE 2018
August 26-29, 2018, Quebec City, Quebec, Canada

DETC2018-85641

1 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

controller is often implemented as a state machine or hybrid
automaton [3]. These states consist of at minimum a “Go-to-
Goal” behavior as well as an “Avoid Obstacle” behavior. One
major advantage of such hybrid implementation architectures
are that they enable the computationally expensive planner to
be run at a very low frequency as compared to the reactive
controller, while still providing accurate navigational
capabilities. However, a negative aspect of this architecture is
that planners often can only guarantee a feasible or optimal
path provided that the robot follows the path accurately,
including while it is moving between supplied waypoints. If the
robot deviates from the proposed path while executing the
motion under the action of the reactive controller, this can
result in the path becoming suboptimal or in putting the robot
in a position where it is unable to reach the goal. For instance,
when the robot deviates from the path there is the possibility
the robot may encounter already planned- for obstacles. In
order to overcome this challenge, existing works have tried to
incorporate more accurate models of the environment and the
robot’s motion, taking into account the kinematic constraints of
the robot as well as the dynamics of robot terrain interactions,
allowing the planner to predict a priori possible deviations that
the robot might take [4–6]. In spite of the best efforts of
researchers, the robots still often deviate from the proposed
path in real life applications, especially when traversing
challenging terrains. Under such conditions it becomes
necessary to have a robust path tracking controller within the
“Go-to- Goal” behavior that will drive the robot back onto the
proposed path, rather than just driving the robot towards the
next waypoint. This guarantees that the optimal path, already
having been computed, will be followed while still maintaining
the hybrid navigation architecture.

In addition, for autonomous platforms that are designed to
operate alongside human beings, such as autonomous wheel
chairs, inventory handling robots, and payload-transporting
drones, motion produced by the path-tracking controller must
be smooth and continuous. In other words, the controller
should limit the velocity, acceleration and even jerk of the
system while producing visibly safe, comfortable and intuitive
motion of the robot to be considered [7, 8]. In this paper we
propose a path tracking controller that produces smooth
motions while meeting the aforementioned requirements.

2 LITERATURE REVIEW
Path tracking for autonomous mobile robots can be defined by
the problem of stabilizing the robot on a reference path such
that the tracking error converges to zero, and the progress of
the robot along the reference path tends toward a nominal,
nonzero rate [2]. One of the earliest path tracking strategies that
showed promising results was the pure pursuit algorithm [9–
10]. Other methods for path tracking involve modifying the
reference path [11, 12] such that a feedback controller can
converge the system onto the path. In addition to being more
computationally intensive, these methods can fail when the
path is designed independent of the dynamics of the robot using

parametric curves such as B-splines. LQR based path tracking
methods, while being optimal, require a linearized model of the
system that possesses path dependent gains that must be
adjusted for each path type [13]. Due to these complexities,
pure pursuit remains as one of the most simple and effective
algorithms in path tracking for a mobile robot. Due to its ease
of implementation and robust nature of this method it is still
very widely used in path tracking, especially for car-like robots
[14, 15].

In the simplest form, pure pursuit (PP) can be considered
as driving the robot to a constantly moving temporary goal
point along the reference trajectory or path [10, 16]. For a
given location of the robot, the algorithm starts with finding the
closest point on the provided path. Next, the temporary goal
point for the robot is chosen with a certain look ahead distance

(l) in front of the closest point along the path, in the direction

of moving towards the final destination. This acts to guide the
robot forward along the path. Finally, based on the type of the
robot, control inputs (left and right wheel velocities for
differential drive robot, steering angle and forward velocity for
a car-like robot) are computed that will drive the robot to the
temporary goal point. The whole process is repeated until the
robot arrives within a given distance of the final goal point,
referred to as the radius of the goal region (Gr). The look ahead
distance is generally chosen to be a constant; however there are
implementations where the look ahead distance is varied on-
line based on the curvature of the path [17, 18]. The two main
challenges arising in the original implementation of PP as
described in literature are:

1. The algorithm can request sharp turns while the robot
is moving at very high speeds.

2. The control action produced varies with the chosen
look ahead distance.

Both issues must be addressed when implemented in
hybrid architecture, as they may result in oscillatory motion of
the robot when combined with state-of-the-art planning
algorithms. Common implemented planners for autonomous
robots include D*Lite [19] and RRT* [20], which in their
simplest form approximate the motion of the robot with straight
lines. As a result, the reference path is usually generated as a
series of waypoints connected by line segments (henceforth
referred to as path segments) leading to the goal. The pure
pursuit algorithm will achieve zero tracking error while
following a straight line segment, as the curvature of the path is
zero. However, the changes in slope encountered while moving
between path segments result in jerky motion of the robot.
Such behavior is due to the fact that the feedback in pure
pursuit is a function of the nearest point on the proposed path,
as determined by the look ahead distance. As explained in [10,
16] changing the value of the look ahead distance changes the
behavior of the controller. A small look ahead will allow the
robot to follow the desired path more closely, but will produce
oscillations in the motion of the robot. On the other hand, a
large look ahead distance produces smooth motion but often

2 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

results in cases where the robot does not follow the path very
accurately, especially at sharp corners or when transitioning
from one path segment to another. In such scenarios, the pure
pursuit controller tends to cut the corners early, which is an
especially dangerous behavior when operating in confined
environments such as warehouses or hospitals.

Existing works in this domain have tried to solve the
problem either by using smooth trajectories inside the planner
or incorporating an external path smoothing operation
performed before executing the path with a tracking controller.
However, such smoothened paths can result in nonzero tracking
error due to the curvature of the path, as mentioned above. A
better approach would be to modify the pure pursuit algorithm
itself to handle the above issues so that the algorithm implicitly
produces smooth tracking for the robot. In the following
sections, we propose modifications to the pure pursuit
controller that result in an efficient path tracking algorithm
which handles these shortcomings. The proposed algorithm is
specifically designed and tested for differential drive robots,
but can easily be generalized for other robot models.

3 PROPOSED CONTROLLER
The central idea behind the proposed controller is to generate
control inputs using a Gaussian kernel centered at the
temporary goal point to which the robot needs to be driven. In
addition, the temporary goal point is computed as a weighted
sum of the closest points to the robot on each of the individual
path segments, with weights based on the relative distance of
the robot from these points. The underlying assumptions for the
Gaussian kernel (GK) controller working are detailed below:

1. A path leading to the goal has been computed by a
planner, such as A* or RRT*. The path is then
provided as a set of waypoints leading from a start
location to the final goal point.

2. The kinematic parameters of the robot, i.e. the robot
width and the wheel radius in the case of a differential
drive robot, are assumed to be known.

Under these assumptions, the working of the controller can
be explained as follows: Let N be the number of line segments
on the path proposed by the planner. For any given position of
the robot, the GK controller will find the closest point on each
of the N segments. This can be done either analytically or
through geometric methods. Temporary goal points are then

chosen l distance in front of the closest point on each of the

path segments. However, if the closest point is the end point on
the goal side of a path segment, the temporary goal is chosen to
be the end point itself. For each temporary goal point, a
normalized 2D Gaussian distribution is created centered at that
point. Each distribution has a standard deviation equal to the
squared distance from the robot to the respective temporary
goal point.

The controller consists of two dimensional circular
Gaussian functions where the standard deviation along the X

axis (x) is equal to the standard deviation along Y axis (y),

allowing for the use of a single standard deviation term, x =

y = . The normalized circular Gaussian is given by
2 2(() + ())(,) = x ya x yF x y Ae    

 (1)

where,

2

2

1
 =

2
1

 =
2

A

a





where, (,)x y  is the center of the distribution.

The N Gaussian distributions can then be combined using
the product rule, which for the special case of 2D circular
Gaussian functions is given by

Figure 1. Commanded motion and gradient of Gaussian Kernel controller during different stages of path tracking.
The robot path is shown in red, goal point in green and Gaussian gradient is shown in blue

3 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

2
1

 =
N

i
f

i i
 μ

μ (2)

2 2
1

1 1N

if i 

 (3)

where (,f fμ) denote the resulting final Gaussian and

(,i iμ) are the individual Gaussian distributions

corresponding to the N path segments. Note that 2,f i μ μ R .

Combining the N temporary goal points for the robot, in this
manner, results in the smooth motion of the center of the
resulting Gaussian, gradually transitioning from one path
segment to another as the robot progresses along the path.

The direction of the gradient of the distribution determines
the desired orientation of the robot in order to approach or
follow the path. The gradient ((,)x yG) of the resulting

Gaussian can be calculated using the following equation

 (,) = 2 () (,)fx y a F x y G X μ (4)

Note that 2(,), x y G X R .

For a unicycle robot model, the desired angular velocity
() of the robot can be obtained from a simple proportional
controller on the error in robot orientation as per the following
equation;

(,)1
(,) = tan ()y

x

G x y

G x y   (5)

 = (); 0p pK K    (6)

where  is the current orientation of the robot,   is the

desired orientation, pK is the proportional gain and 

denotes difference taking into account the wraparound of
angles.

The desired linear velocity (V) of the robot is varied
based on the desired angular velocity of the robot;

1

max

2tan (| |)
= (1)V V






 (7)

The above formulation ensures a maximum linear robot

velocity of maxV , while down scaling nonlinearly for any

nonzero , as shown in Fig. 2. Once the linear and angular
velocities for a unicycle model are determined, they can be
transformed into left and right wheel angular velocities

(,l r ) for a differential drive robot using the transformation

equations;

2
 =

2
 =

l

r

V L

D
V L

D








 (8)

where L is the width of the robot and D is the diameter of the
wheels.

The working of the controller at various stages of tracking
a path is shown in Fig. 1. The motions produced by the
controller tracking a single path from random start points are
shown in Fig. 3. In both the figures, the path to be tracked is
shown in black, the robot is shown in red and the final goal is
shown in green. Fig. 1 also illustrates the variations in gradient
of the resulting Gaussian in blue for each stage. As shown by
the gradient in Fig. 1(A) the final combined Gaussian
distribution has a very high standard deviation when the robot
is far away from the path. The distribution becomes more

Figure 2. Plot showing the variation of V with 
for the proposed velocity controller

Figure 3. Path produced by the proposed controller
for different start positions. Robot path is shown in
red, reference path in black and goal point in green

4 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

localized as the robot gets closer to the path, as shown in Fig.
1(B) and (C). This changing Gaussian distribution produced by
the GK controller drives the robot smoothly to the proposed
path as demonstrated in Fig. 1 and Fig. 3. For generating both
numerical simulations, a simple point robot model capable of
freely moving in x and y direction was assumed. At each
iteration, the robot was moved along the gradient vector as
given by Eqn. (4). This was done solely for illustrating the path
dictated by the controller. Proper simulations involving a
differential drive robot model with control inputs for angular
and linear velocity as given in Eqn. (5,7) are shown in the later
sections of the paper.

Like the traditional pure pursuit algorithm, the proposed
GK algorithm has only one tuning parameter; namely the look

ahead distance (l). The similarities in implementation mean

that this controller is easily substituted into systems where pure
pursuit was typically utilized.

Furthermore, the advantages of the controller are as
follows:

1. The use of a separate velocity controller as given in
Eqn. (7) scales the forward velocity of the robot so
that the algorithm will request sharp turns only at low
speed.

2. The consideration of the closest points in all of the
path segments to produce the final Gaussian allows
the algorithm to work with a small look ahead distance
without producing oscillations in the motion of the
robot. This in turn enables the algorithm to track the
path more accurately, while still maintaining smooth
motion.

These advantages particularly address the shortcomings of
pure pursuit as described previously. The following section
illustrates these factors by comparing the performance of the
proposed controller with pure pursuit in simulation.

4 SIMULATION
For the purpose of validating the proposed control scheme and
to compare its performance with pure pursuit, the two
controllers were utilized to drive a simulated Pioneer P3DX
robot and a tracked robot in the V-REP robotic simulator [21].
For the simulations, the controllers (both pure pursuit and
Gaussian kernel) were run in MATLAB and co-simulated with
V-REP through the remote API Bindings. Two sets of
simulations were conducted, the first to compare the
performance of the controllers while tracking the reference path
when the robots are initialized at different start points and the
second to evaluate their performance while tracking the
reference path in the presence of disturbances.

4.1 Path tracking with different start points
In the initial simulation, the environment consisted of a Pioneer
P3DX on a flat terrain 20m X 20m in size. A series of

connected path segments, analogous to those provided by a
high level planner such as RRT*, were passed to the controller
as the desired path. The waypoint coordinates in meters were
[(2, 2), (5, 8), (10, 8), (10, 12)], in that order, with (10, 12)
being the final goal position. For this simulation, the robot
tracks the path while starting from nine different initial start
points, as shown Table 1. For each of the trials, the robot was
first made to follow the reference path under the action of the
pure pursuit algorithm provided in the MATLAB Robotics
Toolbox [16].

TABLE 1. Results of path tracking simulation with
different start points

Trial
No:

Starting
Point

Pure Pursuit Gaussian Kernel
MCTE

(m)
Time

(s)
MCTE

(m)
Time
(s)

1 (0,0) 0.4859 38.19 0.4178 41.49
2 (4,0) 0.6798 37.30 0.4973 42.20
3 (0,5) 0.9078 32.70 0.6478 39.20
4 (10,4) 3.0187 17.60 3.0590 17.70
5 (4,10) 0.5249 22.10 0.3889 26.60
6 (7,5) 1.4380 18.30 1.0565 24.90
7 (8,10) 0.7910 12.10 0.7497 11.90
8 (12,5) 2.6338 16.70 2.3017 19.20
9 (10,10) 1.6312 6.70 0.9295 11.80

Once that action was completed, the robot then utilized the
Gaussian kernel controller in order to track the path from the
same series of starting points. In both cases, the controllers
updated at a frequency of 50 Hz. For the purpose of this
simulation, precise positioning information obtained from the
simulators is used without any noise.

The look ahead parameter was manually tuned for the pure
pursuit implementation as described in [10, 16] in order to
produce optimal tracking behavior. The complete set of
parameters for the pure pursuit implementation is as follows:

Desired linear velocity = 0.05m/s
Maximum angular velocity = 1.0rad/s
Look ahead distance = 0.8m
Radius of Goal region = 0.1m

The look ahead distance for the pure pursuit controller was
found to be optimal at 0.8m, as any lower value produced
oscillations in the motion of the simulated robot. As stated
previously, it is desirable to have the smallest possible look
ahead distance in order to more closely track the reference path.

Similarly the parameters were tuned for the Gaussian
kernel controller and the values are:

5 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Maximum linear velocity = 0.05m/s
Proportional gain on angular velocity = 0.6
Look ahead distance = 0.1m
Radius of Goal region = 0.1m

Both pure pursuit and the proposed controller produce V
and w control commands for the simulated robot. These
commands are first converted into left and right wheel

velocities (,l r ) for the simulated robot using the

transformation given in Eqn. (8) and then are executed by the
inbuilt joint velocity controller in VREP. The trajectories
followed by the robot are shown in Fig. 4. The various start
points of the robot are shown in blue and labeled by their
respective trial numbers, as in Table 1. The reference path is
shown in black, while the actual path followed by the robot is
in red and the final goal point is in green. In order to quantify
the performance of the controllers for path tracking, we
introduce the cross-track error, which is defined as the
Euclidean distance between the robot and the closest point on
the path computed for every iteration of the controller. The
mean cross-track error (MCTE), the cumulative per trial cross
track error averaged over the total number of controller
iterations, is then calculated. The values of the MCTE, along
with the time taken by the controller to drive the robot to the
goal, for each trial are given in Table 1.

As shown by Fig. 4 the proposed controller results in
closer path tracking as compared to pure pursuit method. This
claim is also supported numerically by the mean cross track
error values presented in Table 1. For all start points except that
of trial 4, the GK controller results in smaller mean cross track
error than pure pursuit. In the case of trial 4, both trajectories
are similar in form, thus resulting in nearly equal mean cross
track error. While Fig. 4 shows that the robot makes sharp turns
under the action of the proposed controller, the motion
produced is still smooth due to the fact the linear velocity

controller as given by Eqn. (7) reduces the velocity in order to
enable the robot to make the turn in place. This behavior then
contributes to the fact that the proposed controller takes more
time to reach the goal when compared to pure pursuit
controller, as shown in Table 1.

4.2 Path tracking under disturbance
Autonomous motion under challenging terrain conditions, such
as the motion of a tracked robot in rough terrain, can result in
high levels of disturbance being introduced to the system.
Some examples of such disturbances include slip experienced
by the robot, actuator limitations restricting robot motion in
high slope regions, and sensor noise. In all these circumstances,
it is extremely valuable to have a robust path tracking
controller to ensure that the robot follows the path accurately.
In order to study path tracking under disturbance, the proposed
controller was simulated on rough terrain, and its performance
was compared to that of pure pursuit.

The simulation environment consisted of a differential
drive tracked robot model operating on a rough terrain of size
9m X 7m, as shown in Fig. 5. The waypoint coordinates for the
reference path, in meters, were [(2, 2), (0, 8), (6, 8)], with (6, 8)
being the final goal. For this simulation, the robot was made to
track the path starting from (0, 0), first under the action of a
pure pursuit controller and then under the proposed GK
controller. As before, the controllers were updated at a
frequency of 50 Hz and precise positioning data is used. The
desired linear velocity for pure pursuit and the maximum linear
velocity for the proposed controller were increased to 0.06m/s
in order to allow the robot handle the rough terrain. All other
parameters were unchanged from the prior simulation. The
height of the terrain varies from 0m to 3m and the maximum
torque on each of the motors on the tracked robot was limited
to 10 Nm inside the V-REP simulator.

Figure 4. Comparison of the controller performance: (A) Pure pursuit, (B) Proposed controller

6 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

The trajectories followed by the robot under the action of
both the controllers are shown overlaid with the terrain
topography map in Fig. 6. The start point is shown in cyan,
reference path in black and the goal point in green. The path
followed by the robot under the action of the pure pursuit
controller is shown in red and the proposed controller is shown
in blue. As shown by Fig. 6, even in the presence of
disturbance, the GK controller enables the robot to follow the
path more closely as compared to pure pursuit. For this
simulation case, the starting point of the last path segment is in
a region of steep slope due to the large gradient in terrain
height. As shown in Fig. 6, the steep terrain causes the robot to
deviate from the desired path at this point in both cases. But the
GK controller recovers much faster as compared to the pure

pursuit method. Figure 7 shows the torque acting on the left
and right tracks for the above simulation case.

The results of both simulations demonstrate that the
proposed GK controller has superior path tracking
characteristics as compared to the pure pursuit algorithm. This
behavior is demonstrated both when navigating from a variety
of initialization points as well as in a non-uniform terrain.

5 CONCLUSION AND FUTURE WORK
This paper presented a novel Gaussian kernel controller for
path tracking in mobile robots. The controller was designed to
address shortcomings in existing pure pursuit implementations
in order to produce smooth motions while ensuring accurate
tracking of the provided reference path utilizing the gradients
of moving Gaussian kernels. Based on the simulation results,
the proposed controller demonstrated superior path tracking
performance as compared to the traditional pure pursuit
algorithm. The simulations compared the performance of
controllers for two different cases, one where the robots tracked
a single reference path when initialized from a variety of start
points and the other where the robots tracked a reference path
through a rough terrain in the presence of environmental
disturbance.

Future plans for continued research into the applications
and features of the proposed controller will focus on real-life
implementation. Hardware tests will include the usage of the
GK controller by a variety of unique mobile robots, including
the Hybrid Mechanism Mobile Robot (HMMR) [22] and
STORM [23]. Tests will be conducted to verify the
performance of the controller in the presence of both sensory
and environmental noise, such as in high slip conditions or with
an intentionally noisy feedback device. In addition to
differential drive robots, the controller will also be explored for

Figure 5. Simulated environment utilized for
studying path tracking performance under

disturbance in V-REP

Figure 6. Comparison of path tracking in the

presence of disturbance. Path followed under the
action of the proposed controller is shown in blue

and pure pursuit controller is shown in red

Figure 7. Torque applied on the left and right tracks of
the robot for the path tracking under disturbance

simulation

7 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

path tracking in other robot models, such as car-like robots and
quadcopters. Additionally, the use of an ellipsoid Gaussian in
the controller, and the attendant additional tuning adjustments
required to redesign the controller in such a form will be
explored. The author’s hypothesize that the use of an ellipsoid
Gaussian can lend itself to larger gradients adjacent to the path,
should the two axes be chosen such that the larger standard
deviation (and thus the major axis of the ellipsoid distribution)
is parallel to the path and the smaller standard deviation (and
minor ellipsoid axis) is perpendicular to the path. This may
provide a stronger propensity of the controller to keep the robot
on the path at all times.

ACKNOWLEDGMENT
This work is supported by the US Army Medical Research &
Materiel Command’s Telemedicine & Advanced Technology
Research Center (TATRC), under Contract No. W81XWH-16-
C- 0062. The views, opinions, and/or findings contained in this
report are those of the authors and should not be construed as
an official Department of the Army position, policy, or decision
unless so designated by other documentation.

REFERENCES
[1] Kruse, T., Pandey, A. K., Alami, R., and Kirsch, A., 2013.

“Human-aware robot navigation: A survey”. Robotics and
Autonomous Systems, 61(12), dec, pp. 1726–1743.

[2] Paden, B., Cap, M., Yong, S. Z., Yershov, D., and
Frazzoli, E., 2016. “A Survey of Motion Planning and
Control Techniques for Self-Driving Urban Vehicles”.
IEEE Transactions on Intelligent Vehicles, 1(1), mar, pp.
33–55.

[3] Egerstedt, M., 2000. “Behavior based robotics using
regularized hybrid automata”. In International Workshop
on Hybrid Systems: Computation and Control. IEEE, pp.
103– 116.

[4] Howard, T. M., and Kelly, A., 2007. “Optimal rough
terrain trajectory generation for wheeled mobile robots”.
The International Journal of Robotics Research, 26(2), pp.
141– 166.

[5] Reina, G., Bellone, M., Spedicato, L., and Giannoccaro,
N. I., 2014. “3D traversability awareness for rough terrain
mobile robots”. Sensor Review, 34(2), pp. 220–232.

[6] Currier, P. N., andWicks, A. L., 2013. “A novel method
for prediction of mobile robot maneuvering spaces”.
Journal of Terramechanics, 50(2), apr, pp. 85–97.

[7] Park, J. J., and Kuipers, B., 2011. “A smooth control law
for graceful motion of differential wheeled mobile robots
in 2D environment”. Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4896–4902.

[8] Gulati, S., and Kuipers, B., 2008. “High performance
control for graceful motion of an intelligent wheelchair”.
Proceedings - IEEE International Conference on Robotics
and Automation, pp. 3932–3938.

[9] Wallace, R., Stentz, A., Thorpe, C. E., Maravec, H.,
Whittaker, W., and Kanade, T., 1985. “First Results in
Robot Road-Following.”. Ijcai, pp. 1089–1095.

[10] Coulter, R. C., 1992. “Implementation of the Pure Pursuit
Path Tracking Algorithm”. Communication(January). [12]
Amidi, O., and Thorpe, C. E., 1990. Integrated mobile
robot control. Tech. Rep. May, Carnegie Mellon
University, Pittsburgh, PA, may.

[11] Micaelli, A., Samson, C., Micaelli, A., and Samson, C.,
1993. Trajectory tracking for unicycle-type and two
steering- wheels mobile robots. Tech. rep., INRIA.

[12] Piazzi, A., Lo Bianco, C., and Romano, M., 2007.
“Splines for the Smooth Path Generation of Wheeled
Mobile Robots”. IEEE Transactions on Robotics, 23(5),
oct, pp. 1089–1095.

[13] Cordeiro, R. A., Azinheira, J. R., De Paiva, E. C., and
Bueno, S. S., 2013. “Dynamic modeling and bio-inspired
LQR approach for off-road robotic vehicle path tracking”.
2013 16th International Conference on Advanced
Robotics, ICAR 2013.

[14] Buehler, M., Iagnemma, K., and Singh, S., eds., 2009. The
DARPA Urban Challenge, Vol. 56 of Springer Tracts in
Advanced Robotics. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[15] Ohta, H., Akai, N., Takeuchi, E., Kato, S., and Edahiro,
M., 2016. “Pure Pursuit Revisited: Field Testing of
Autonomous Vehicles in Urban Areas”. In 2016 IEEE 4th
International Conference on Cyber-Physical Systems,
Networks, and Applications (CPSNA), IEEE, pp. 7–12.

[16] Corke, P., 2017. Robotics, Vision and Control, Vol. 118 of
Springer Tracts in Advanced Robotics. Springer
International Publishing, Cham.

[17] Wit, J., Crane, C. D., and Armstrong, D., 2004.
“Autonomous ground vehicle path tracking”. Journal of
Robotic Systems, 21(8), pp. 439–449.

[18] Giesbrecht, J. L., Mackay, D., Collier, J., and Verret, S.,
2005. “Path tracking for unmanned ground vehicle
navigation”. DRDC Suffield TM(December).

[19] Koenig, S., and Likhachev, M., 2002. “D* Lite”.
Proceedings of the Eighteenth National Conference on
Artificial Intelligence, pp. 476–483.

[20] Karaman, S., and Frazzoli, E., 2010. “Incremental
Sampling-based Algorithms for Optimal Motion
Planning”. CoRR, abs/1005.0, may.

[21] Coppelia Robotics, 2018. V-REP.
[22] Ben-Tzvi, P., Goldenberg, A. A., and Zu, J. W., 2010.

“Articulated hybrid mobile robot mechanism with
compounded mobility and manipulation and on-board
wireless sensor/actuator control interfaces”. Mechatronics,
20(6), sep, pp. 627–639.

[23] Kumar, P., Saab, W., Ben-Tzvi, P., 2017. “A Hybrid
Tracked-Wheeled Multi-Directional Mobile Robot”.
ASME Journal of Mechanisms and Robotics, Under
review.

8 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

