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ABSTRACT 
This paper describes the design of a Gaussian kernel based path 
tracking controller for mobile robots. In order to achieve 
successful navigation under hybrid navigation architectures, it 
is critical for the robot to follow the path provided by a high-
level planner even while moving between waypoints. This is 
particularly difficult in real life situations involving robot 
motion in challenging terrains. Existing controllers for this 
purpose such as the pure pursuit does not ensure smooth 
motion of the robot or accurate tracking while moving between 
path segments. This paper describes the design of a controller 
that can ensure accurate path tracking even in the presence of 
disturbances, by utilizing the gradients of moving Gaussian 
kernels. In order to characterize the performance of the 
proposed controller, two different sets of simulations are 
conducted. Based on the results of the simulations, the 
Gaussian kernel controller ensures accurate tracking of the 
provided reference path while addressing the shortcomings of 
existing controllers. The paper concludes with a discussion on 
future directions for improvement. 

NOMENCLATURE 

l Look ahead distance (m) 

rG Radius of the goal region (m) 

N Number of Path segments 
  Center of the Gaussian 
  Standard deviation for the Gaussian 

G Gradient of the Gaussian 

F Normalized 2D circular Gaussian 

V Desired linear velocity of the robot (m/s) 

maxV Maximum linear velocity of the robot (m/s) 

  Desired angular velocity of the robot (rad/s) 

pK Proportional gain 

L Width of the Differential drive robot (m) 

D Diameter of the wheels of differential drive robot (m) 

l  Angular velocity of the left wheel of the differential 
(rad/s) 

r  Angular velocity of the right wheel of the differential 
(rad/s) 

1 INTRODUCTION 
One of the most popular topics in robotics and control is the 
exploration of various modes of autonomous navigation of 
mobile robots. An effective strategy is the implementation of 
hybrid navigation architecture, consisting of a deliberate high-
level planner followed by a reactive low level controller [1, 2]. 
The high-level planner takes into account the map of the 
environment and develops a path to guide the robot to the goal. 
The path is generally output as a set of waypoints leading to the 
goal. The main responsibility of the reactive controller is to 
drive the robot through these waypoints. In addition, the 
reactive controller is also responsible for handling sudden 
changes in the environment that may require the robot to 
deviate from the path, or even execute an immediate stop. Such 
behavior can be triggered by moving obstacles or even by 
disturbances such as the slope of the terrain, slip or actuator 
limitations of the robot that the planner failed to consider. In 
order to handle these varied responsibilities, the reactive 
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controller is often implemented as a state machine or hybrid 
automaton [3]. These states consist of at minimum a “Go-to- 
Goal” behavior as well as an “Avoid Obstacle” behavior. One 
major advantage of such hybrid implementation architectures 
are that they enable the computationally expensive planner to 
be run at a very low frequency as compared to the reactive 
controller, while still providing accurate navigational 
capabilities. However, a negative aspect of this architecture is 
that planners often can only guarantee a feasible or optimal 
path provided that the robot follows the path accurately, 
including while it is moving between supplied waypoints. If the 
robot deviates from the proposed path while executing the 
motion under the action of the reactive controller, this can 
result in the path becoming suboptimal or in putting the robot 
in a position where it is unable to reach the goal. For instance, 
when the robot deviates from the path there is the possibility 
the robot may encounter already planned- for obstacles. In 
order to overcome this challenge, existing works have tried to 
incorporate more accurate models of the environment and the 
robot’s motion, taking into account the kinematic constraints of 
the robot as well as the dynamics of robot terrain interactions, 
allowing the planner to predict a priori possible deviations that 
the robot might take [4–6]. In spite of the best efforts of 
researchers, the robots still often deviate from the proposed 
path in real life applications, especially when traversing 
challenging terrains. Under such conditions it becomes 
necessary to have a robust path tracking controller within the 
“Go-to- Goal” behavior that will drive the robot back onto the 
proposed path, rather than just driving the robot towards the 
next waypoint. This guarantees that the optimal path, already 
having been computed, will be followed while still maintaining 
the hybrid navigation architecture.  

In addition, for autonomous platforms that are designed to 
operate alongside human beings, such as autonomous wheel 
chairs, inventory handling robots, and payload-transporting 
drones, motion produced by the path-tracking controller must 
be smooth and continuous. In other words, the controller 
should limit the velocity, acceleration and even jerk of the 
system while producing visibly safe, comfortable and intuitive 
motion of the robot to be considered [7, 8]. In this paper we 
propose a path tracking controller that produces smooth 
motions while meeting the aforementioned requirements.  

2 LITERATURE REVIEW 
Path tracking for autonomous mobile robots can be defined by 
the problem of stabilizing the robot on a reference path such 
that the tracking error converges to zero, and the progress of 
the robot along the reference path tends toward a nominal, 
nonzero rate [2]. One of the earliest path tracking strategies that 
showed promising results was the pure pursuit algorithm [9–
10]. Other methods for path tracking involve modifying the 
reference path [11, 12] such that a feedback controller can 
converge the system onto the path. In addition to being more 
computationally intensive, these methods can fail when the 
path is designed independent of the dynamics of the robot using 

parametric curves such as B-splines. LQR based path tracking 
methods, while being optimal, require a linearized model of the 
system that possesses path dependent gains that must be 
adjusted for each path type [13]. Due to these complexities, 
pure pursuit remains as one of the most simple and effective 
algorithms in path tracking for a mobile robot. Due to its ease 
of implementation and robust nature of this method it is still 
very widely used in path tracking, especially for car-like robots 
[14, 15]. 

In the simplest form, pure pursuit (PP) can be considered 
as driving the robot to a constantly moving temporary goal 
point along the reference trajectory or path [10, 16]. For a 
given location of the robot, the algorithm starts with finding the 
closest point on the provided path. Next, the temporary goal 
point for the robot is chosen with a certain look ahead distance 

( l ) in front of the closest point along the path, in the direction 

of moving towards the final destination. This acts to guide the 
robot forward along the path. Finally, based on the type of the 
robot, control inputs (left and right wheel velocities for 
differential drive robot, steering angle and forward velocity for 
a car-like robot) are computed that will drive the robot to the 
temporary goal point. The whole process is repeated until the 
robot arrives within a given distance of the final goal point, 
referred to as the radius of the goal region (Gr). The look ahead 
distance is generally chosen to be a constant; however there are 
implementations where the look ahead distance is varied on-
line based on the curvature of the path [17, 18]. The two main 
challenges arising in the original implementation of PP as 
described in literature are:  

1. The algorithm can request sharp turns while the robot 
is moving at very high speeds. 

2. The control action produced varies with the chosen 
look ahead distance. 

Both issues must be addressed when implemented in 
hybrid architecture, as they may result in oscillatory motion of 
the robot when combined with state-of-the-art planning 
algorithms. Common implemented planners for autonomous 
robots include D*Lite [19] and RRT* [20], which in their 
simplest form approximate the motion of the robot with straight 
lines. As a result, the reference path is usually generated as a 
series of waypoints connected by line segments (henceforth 
referred to as path segments) leading to the goal. The pure 
pursuit algorithm will achieve zero tracking error while 
following a straight line segment, as the curvature of the path is 
zero. However, the changes in slope encountered while moving 
between path segments result in jerky motion of the robot. 
Such behavior is due to the fact that the feedback in pure 
pursuit is a function of the nearest point on the proposed path, 
as determined by the look ahead distance. As explained in [10, 
16] changing the value of the look ahead distance changes the 
behavior of the controller. A small look ahead will allow the 
robot to follow the desired path more closely, but will produce 
oscillations in the motion of the robot. On the other hand, a 
large look ahead distance produces smooth motion but often 
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results in cases where the robot does not follow the path very 
accurately, especially at sharp corners or when transitioning 
from one path segment to another. In such scenarios, the pure 
pursuit controller tends to cut the corners early, which is an 
especially dangerous behavior when operating in confined 
environments such as warehouses or hospitals. 

Existing works in this domain have tried to solve the 
problem either by using smooth trajectories inside the planner 
or incorporating an external path smoothing operation 
performed before executing the path with a tracking controller. 
However, such smoothened paths can result in nonzero tracking 
error due to the curvature of the path, as mentioned above. A 
better approach would be to modify the pure pursuit algorithm 
itself to handle the above issues so that the algorithm implicitly 
produces smooth tracking for the robot. In the following 
sections, we propose modifications to the pure pursuit 
controller that result in an efficient path tracking algorithm 
which handles these shortcomings. The proposed algorithm is 
specifically designed and tested for differential drive robots, 
but can easily be generalized for other robot models. 

3 PROPOSED CONTROLLER 
The central idea behind the proposed controller is to generate 
control inputs using a Gaussian kernel centered at the 
temporary goal point to which the robot needs to be driven. In 
addition, the temporary goal point is computed as a weighted 
sum of the closest points to the robot on each of the individual 
path segments, with weights based on the relative distance of 
the robot from these points. The underlying assumptions for the 
Gaussian kernel (GK) controller working are detailed below: 

1. A path leading to the goal has been computed by a 
planner, such as A* or RRT*. The path is then 
provided as a set of waypoints leading from a start 
location to the final goal point. 

2. The kinematic parameters of the robot, i.e. the robot 
width and the wheel radius in the case of a differential 
drive robot, are assumed to be known. 

Under these assumptions, the working of the controller can 
be explained as follows: Let N be the number of line segments 
on the path proposed by the planner. For any given position of 
the robot, the GK controller will find the closest point on each 
of the N segments. This can be done either analytically or 
through geometric methods. Temporary goal points are then 

chosen l  distance in front of the closest point on each of the 

path segments. However, if the closest point is the end point on 
the goal side of a path segment, the temporary goal is chosen to 
be the end point itself. For each temporary goal point, a 
normalized 2D Gaussian distribution is created centered at that 
point. Each distribution has a standard deviation equal to the 
squared distance from the robot to the respective temporary 
goal point.  

The controller consists of two dimensional circular 
Gaussian functions where the standard deviation along the X 

axis ( x ) is equal to the standard deviation along Y axis ( y ), 

allowing for the use of a single standard deviation term, x = 

y = . The normalized circular Gaussian is given by 
2 2(( )  + ( ) )( , ) = x ya x yF x y Ae    

                        (1)               

where,                                                                                       
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where, ( , )x y   is the center of the distribution. 

The N Gaussian distributions can then be combined using 
the product rule, which for the special case of 2D circular 
Gaussian functions is given by 

 
 

Figure 1. Commanded motion and gradient of Gaussian Kernel controller during different stages of path tracking. 
The robot path is shown in red, goal point in green and Gaussian gradient is shown in blue 
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where ( ,f fμ ) denote the resulting final Gaussian and 

( ,i iμ ) are the individual Gaussian distributions 

corresponding to the N path segments. Note that 2,f i μ μ R . 

Combining the N temporary goal points for the robot, in this 
manner, results in the smooth motion of the center of the 
resulting Gaussian, gradually transitioning from one path 
segment to another as the robot progresses along the path. 

The direction of the gradient of the distribution determines 
the desired orientation of the robot in order to approach or 
follow the path. The gradient ( ( , )x yG ) of the resulting 

Gaussian can be calculated using the following equation 
 

 ( , ) = 2 ( ) ( , )fx y a F x y G X μ                       (4) 

 

Note that 2( , ),  x y G X R . 

For a unicycle robot model, the desired angular velocity 
( ) of the robot can be obtained from a simple proportional 
controller on the error in robot orientation as per the following 
equation; 

 

  
( , )1
( , ) = tan ( )y

x

G x y

G x y                                     (5) 

   = ( );  0p pK K                          (6) 

 

where   is the current orientation of the robot,     is the 

desired orientation, pK   is the proportional gain and   

denotes difference taking into account the wraparound of 
angles. 

The desired linear velocity (V ) of the robot is varied 
based on the desired angular velocity of the robot; 

 

  
1

max

2tan (| |)
= (1 )V V






                   (7) 

 
The above formulation ensures a maximum linear robot 

velocity of maxV , while down scaling nonlinearly for any 

nonzero , as shown in Fig. 2. Once the linear and angular 
velocities for a unicycle model are determined, they can be 
transformed into left and right wheel angular velocities 

( ,l r  ) for a differential drive robot using the transformation 

equations; 

       

2
 = 

2
 = 

l

r

V L

D
V L

D








                                  (8) 

where L is the width of the robot and D is the diameter of the 
wheels.  

The working of the controller at various stages of tracking 
a path is shown in Fig. 1. The motions produced by the 
controller tracking a single path from random start points are 
shown in Fig. 3. In both the figures, the path to be tracked is 
shown in black, the robot is shown in red and the final goal is 
shown in green. Fig. 1 also illustrates the variations in gradient 
of the resulting Gaussian in blue for each stage. As shown by 
the gradient in Fig. 1(A) the final combined Gaussian 
distribution has a very high standard deviation when the robot 
is far away from the path. The distribution becomes more 

 

Figure 2. Plot showing the variation of V   with    
for the proposed velocity controller 

 
 

Figure 3. Path produced by the proposed controller 
for different start positions. Robot path is shown in 
red, reference path in black and goal point in green 

4 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 

localized as the robot gets closer to the path, as shown in Fig. 
1(B) and (C). This changing Gaussian distribution produced by 
the GK controller drives the robot smoothly to the proposed 
path as demonstrated in Fig. 1 and Fig. 3. For generating both 
numerical simulations, a simple point robot model capable of 
freely moving in x and y direction was assumed. At each 
iteration, the robot was moved along the gradient vector as 
given by Eqn. (4). This was done solely for illustrating the path 
dictated by the controller. Proper simulations involving a 
differential drive robot model with control inputs for angular 
and linear velocity as given in Eqn. (5,7) are shown in the later 
sections of the paper. 

Like the traditional pure pursuit algorithm, the proposed 
GK algorithm has only one tuning parameter; namely the look 

ahead distance ( l  ). The similarities in implementation mean 

that this controller is easily substituted into systems where pure 
pursuit was typically utilized. 

Furthermore, the advantages of the controller are as 
follows: 

1. The use of a separate velocity controller as given in 
Eqn. (7) scales the forward velocity of the robot so 
that the algorithm will request sharp turns only at low 
speed. 

2. The consideration of the closest points in all of the 
path segments to produce the final Gaussian allows 
the algorithm to work with a small look ahead distance 
without producing oscillations in the motion of the 
robot. This in turn enables the algorithm to track the 
path more accurately, while still maintaining smooth 
motion. 

These advantages particularly address the shortcomings of 
pure pursuit as described previously. The following section 
illustrates these factors by comparing the performance of the 
proposed controller with pure pursuit in simulation.  

4 SIMULATION 
For the purpose of validating the proposed control scheme and 
to compare its performance with pure pursuit, the two 
controllers were utilized to drive a simulated Pioneer P3DX 
robot and a tracked robot in the V-REP robotic simulator [21]. 
For the simulations, the controllers (both pure pursuit and 
Gaussian kernel) were run in MATLAB and co-simulated with 
V-REP through the remote API Bindings. Two sets of 
simulations were conducted, the first to compare the 
performance of the controllers while tracking the reference path 
when the robots are initialized at different start points and the 
second to evaluate their performance while tracking the 
reference path in the presence of disturbances. 

4.1 Path tracking with different start points 
In the initial simulation, the environment consisted of a Pioneer 
P3DX on a flat terrain 20m X 20m in size. A series of 

connected path segments, analogous to those provided by a 
high level planner such as RRT*, were passed to the controller 
as the desired path. The waypoint coordinates in meters were 
[(2, 2), (5, 8), (10, 8), (10, 12)], in that order, with (10, 12) 
being the final goal position. For this simulation, the robot 
tracks the path while starting from nine different initial start 
points, as shown Table 1. For each of the trials, the robot was 
first made to follow the reference path under the action of the 
pure pursuit algorithm provided in the MATLAB Robotics 
Toolbox [16].  
 

TABLE 1. Results of path tracking simulation with 
different start points 

 

Trial 
No: 

Starting 
Point 

Pure Pursuit Gaussian Kernel 
MCTE 

(m) 
Time 

(s) 
MCTE 

(m) 
Time 
(s) 

1 (0,0) 0.4859 38.19 0.4178 41.49 
2 (4,0) 0.6798 37.30 0.4973 42.20 
3 (0,5) 0.9078 32.70 0.6478 39.20 
4 (10,4) 3.0187 17.60 3.0590 17.70 
5 (4,10) 0.5249 22.10 0.3889 26.60 
6 (7,5) 1.4380 18.30 1.0565 24.90 
7 (8,10) 0.7910 12.10 0.7497 11.90 
8 (12,5) 2.6338 16.70 2.3017 19.20 
9 (10,10) 1.6312 6.70 0.9295 11.80 

 
Once that action was completed, the robot then utilized the 
Gaussian kernel controller in order to track the path from the 
same series of starting points. In both cases, the controllers 
updated at a frequency of 50 Hz. For the purpose of this 
simulation, precise positioning information obtained from the 
simulators is used without any noise. 

The look ahead parameter was manually tuned for the pure 
pursuit implementation as described in [10, 16] in order to 
produce optimal tracking behavior. The complete set of 
parameters for the pure pursuit implementation is as follows: 

 

Desired linear velocity = 0.05m/s 
Maximum angular velocity = 1.0rad/s 
Look ahead distance = 0.8m 
Radius of Goal region = 0.1m 
 

The look ahead distance for the pure pursuit controller was 
found to be optimal at 0.8m, as any lower value produced 
oscillations in the motion of the simulated robot. As stated 
previously, it is desirable to have the smallest possible look 
ahead distance in order to more closely track the reference path. 

Similarly the parameters were tuned for the Gaussian 
kernel controller and the values are: 
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Maximum linear velocity = 0.05m/s 
Proportional gain on angular velocity = 0.6 
Look ahead distance = 0.1m 
Radius of Goal region = 0.1m 
 

Both pure pursuit and the proposed controller produce V 
and w control commands for the simulated robot. These 
commands are first converted into left and right wheel 

velocities ( ,l r  ) for the simulated robot using the 

transformation given in Eqn. (8) and then are executed by the 
inbuilt joint velocity controller in VREP. The trajectories 
followed by the robot are shown in Fig. 4. The various start 
points of the robot are shown in blue and labeled by their 
respective trial numbers, as in Table 1. The reference path is 
shown in black, while the actual path followed by the robot is 
in red and the final goal point is in green. In order to quantify 
the performance of the controllers for path tracking, we 
introduce the cross-track error, which is defined as the 
Euclidean distance between the robot and the closest point on 
the path computed for every iteration of the controller. The 
mean cross-track error (MCTE), the cumulative per trial cross 
track error averaged over the total number of controller 
iterations, is then calculated. The values of the MCTE, along 
with the time taken by the controller to drive the robot to the 
goal, for each trial are given in Table 1. 

As shown by Fig. 4 the proposed controller results in 
closer path tracking as compared to pure pursuit method. This 
claim is also supported numerically by the mean cross track 
error values presented in Table 1. For all start points except that 
of trial 4, the GK controller results in smaller mean cross track 
error than pure pursuit. In the case of trial 4, both trajectories 
are similar in form, thus resulting in nearly equal mean cross 
track error. While Fig. 4 shows that the robot makes sharp turns 
under the action of the proposed controller, the motion 
produced is still smooth due to the fact the linear velocity 

controller as given by Eqn. (7) reduces the velocity in order to 
enable the robot to make the turn in place. This behavior then 
contributes to the fact that the proposed controller takes more 
time to reach the goal when compared to pure pursuit 
controller, as shown in Table 1. 

4.2 Path tracking under disturbance 
Autonomous motion under challenging terrain conditions, such 
as the motion of a tracked robot in rough terrain, can result in 
high levels of disturbance being introduced to the system. 
Some examples of such disturbances include slip experienced 
by the robot, actuator limitations restricting robot motion in 
high slope regions, and sensor noise. In all these circumstances, 
it is extremely valuable to have a robust path tracking 
controller to ensure that the robot follows the path accurately. 
In order to study path tracking under disturbance, the proposed 
controller was simulated on rough terrain, and its performance 
was compared to that of pure pursuit. 

The simulation environment consisted of a differential 
drive tracked robot model operating on a rough terrain of size 
9m X 7m, as shown in Fig. 5. The waypoint coordinates for the 
reference path, in meters, were [(2, 2), (0, 8), (6, 8)], with (6, 8) 
being the final goal. For this simulation, the robot was made to 
track the path starting from (0, 0), first under the action of a 
pure pursuit controller and then under the proposed GK 
controller. As before, the controllers were updated at a 
frequency of 50 Hz and precise positioning data is used. The 
desired linear velocity for pure pursuit and the maximum linear 
velocity for the proposed controller were increased to 0.06m/s 
in order to allow the robot handle the rough terrain. All other 
parameters were unchanged from the prior simulation. The 
height of the terrain varies from 0m to 3m and the maximum 
torque on each of the motors on the tracked robot was limited 
to 10 Nm inside the V-REP simulator. 

 
 

Figure 4. Comparison of the controller performance: (A) Pure pursuit, (B) Proposed controller 
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The trajectories followed by the robot under the action of 
both the controllers are shown overlaid with the terrain 
topography map in Fig. 6. The start point is shown in cyan, 
reference path in black and the goal point in green. The path 
followed by the robot under the action of the pure pursuit 
controller is shown in red and the proposed controller is shown 
in blue.  As shown by Fig. 6, even in the presence of 
disturbance, the GK controller enables the robot to follow the 
path more closely as compared to pure pursuit. For this 
simulation case, the starting point of the last path segment is in 
a region of steep slope due to the large gradient in terrain 
height. As shown in Fig. 6, the steep terrain causes the robot to 
deviate from the desired path at this point in both cases. But the 
GK controller recovers much faster as compared to the pure 

pursuit method. Figure 7 shows the torque acting on the left 
and right tracks for the above simulation case. 

The results of both simulations demonstrate that the 
proposed GK controller has superior path tracking 
characteristics as compared to the pure pursuit algorithm. This 
behavior is demonstrated both when navigating from a variety 
of initialization points as well as in a non-uniform terrain. 

5 CONCLUSION AND FUTURE WORK 
This paper presented a novel Gaussian kernel controller for 
path tracking in mobile robots. The controller was designed to 
address shortcomings in existing pure pursuit implementations 
in order to produce smooth motions while ensuring accurate 
tracking of the provided reference path utilizing the gradients 
of moving Gaussian kernels. Based on the simulation results, 
the proposed controller demonstrated superior path tracking 
performance as compared to the traditional pure pursuit 
algorithm. The simulations compared the performance of 
controllers for two different cases, one where the robots tracked 
a single reference path when initialized from a variety of start 
points and the other where the robots tracked a reference path 
through a rough terrain in the presence of environmental 
disturbance. 

Future plans for continued research into the applications 
and features of the proposed controller will focus on real-life 
implementation. Hardware tests will include the usage of the 
GK controller by a variety of unique mobile robots, including 
the Hybrid Mechanism Mobile Robot (HMMR) [22] and 
STORM [23]. Tests will be conducted to verify the 
performance of the controller in the presence of both sensory 
and environmental noise, such as in high slip conditions or with 
an intentionally noisy feedback device. In addition to 
differential drive robots, the controller will also be explored for 

 
 

Figure 5. Simulated environment utilized for 
studying path tracking performance under 

disturbance in V-REP 

 
Figure 6. Comparison of path tracking in the 

presence of disturbance. Path followed under the 
action of the proposed controller is shown in blue 

and pure pursuit controller is shown in red 

Figure 7. Torque applied on the left and right tracks of 
the robot for the path tracking under disturbance 

simulation 
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path tracking in other robot models, such as car-like robots and 
quadcopters. Additionally, the use of an ellipsoid Gaussian in 
the controller, and the attendant additional tuning adjustments 
required to redesign the controller in such a form will be 
explored. The author’s hypothesize that the use of an ellipsoid 
Gaussian can lend itself to larger gradients adjacent to the path, 
should the two axes be chosen such that the larger standard 
deviation (and thus the major axis of the ellipsoid distribution) 
is parallel to the path and the smaller standard deviation (and 
minor ellipsoid axis) is perpendicular to the path. This may 
provide a stronger propensity of the controller to keep the robot 
on the path at all times. 
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