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ABSTRACT

For utilizing robotic tail to stabilize and maneuver a
quadruped, it is important to understand the mechanism of how
the tail motion influences the quadruped motion which requires
obtaining an analytic dynamic model. This paper presents a
systematic methodology for modeling the dynamics of a general
quadruped (capable of all 6 DOF motions) with a robotic
pendulum tail based on the virtual work principle. The
formulation of this model is motivated by robotic tail research,
it can also be used as an alternative approach to model the
quadruped dynamics other than using Lagrangian and Newton-
Euler based methods. Numerical simulations are also conducted
to verify both the forward and the inverse model.

1 INTRODUCTION

Recently, inspired by animals, researchers became
interested in using robotic tails [1-8] to help maneuver and
stabilize the locomotion [9] of bipedal and quadrupedal robots.
In order to achieve this, understanding the mechanism of how
the tail motion influences the body motion, i.c., the dynamic
model of legged robots with robotic tails, is necessary. For the
tail-body dynamics, most researchers either use simple models
([1, 4] consider only the plenary motion for modeling while [2,
4, 6] treating the robot as one rigid body) or model the
dynamics based on the assumption that the feet are able to slide
on the ground [3]. This simplification is effective for a specific
robot [3, 4] or for the case that the robot is in the air [2].
However, when the robot is walking on the ground, the effect of
the foot-ground friction cannot be ignored. In this case, forcing
the tail to act may cause the robot to fall over. On the other
hand, the simplified planar model is not always valid, especially
during fast motion. The effect of the leg motions may have a
significant contribution to the whole body dynamics. All these
motivated us to develop a new dynamic model that allows all
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6DOF motions of the quadruped and does not rely on the sliding
assumption.

At present, most dynamical models of the quadruped are
based on the Lagrangian equation or the Newton-Euler
equations. Newton-Euler method [10] computes the dynamic
terms recursively, which is very suitable to implement
numerically. However, this method requires computing
unnecessary constraint forces and is hard to investigate the
dynamical system analytically. Lagrangian method [11, 12] is
another popular way to formulate the dynamic model. However,
the Lagrangian method requires computing the derivative of
kinetic energy, which is normally hard to process, especially for
systems with high dimensions and closed kinematic chains. In
addition, to make the formulation easier, more generalized
coordinates (the so-called cyclic coordinates) than the system
degrees of freedom are used. Thus, to make the system
determinate, additional constraint equations along with the
differential equation are required, which yields a hard-to-solve
differential algebraic equation (DAE).

Other approaches proposed in the literature include Center
of Inertia (COI) [13], floating base method [14], modular
formulation frame [15] and virtual power [16] (Kane’s method).
However, the basic methodologies these approaches adopt also
belong to the above two approaches.

Virtual work principle is another popular approach to
derive the dynamic model of a multibody system. This method
has the benefit of eliminating the constraint forces, which
makes it very useful when researchers are only concerned about
the overall motions and the actuation forces. In general,
quadruped is such a case. Moreover, a quadruped can be
regarded as a parallel mechanism. It is well known that for a
parallel mechanism, the inverse dynamics are relatively easy
while the forward dynamics are harder to derive. Thus, virtual
work principle is widely used in parallel mechanisms [17, 18] to
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formulate the inverse dynamics. On the other hand, due to the
nature of virtual work (assembling the whole body dynamics by
adding up the part dynamics), it is potentially useful to model
the dynamics modularly. In addition, it is well known that the
hybrid dynamics of legged robots usually have several,
sometimes even more than ten phases. A unified way to model
the different phases would be very useful for the research
community. All these motivate us to use virtual work principle
to model the quadruped dynamics. To the authors’ best
knowledge, there is currently no dynamics modelling done by
virtual work for quadruped robots.

Note that this paper focuses on the usage of virtual work
principle in the dynamic modeling of the quadruped. Therefore,
we only considered the case that all four legs of the quadruped
are on the ground. The rest of this paper is organized as follows.
Section 2 presents the kinematic analysis of the mechanism,
which includes position analysis, velocity analysis, and
acceleration analysis. Section 3 introduces the virtual work
principle briefly and formulates the inverse and forward
dynamics, respectively. Finally, two numerical simulations are
presented in section 4 to validate both the inverse and forward
models.

Travelling

Figure 1. The kinematic configuration of a
quadruped with a tail

2 KINEMATIC ANALYSIS

The kinematic configuration of the quadruped is shown in
Fig. 1. The quadruped consists of one torso, one tail, and four
identical legs. In this paper, since we only consider the
dynamics when the four feet are all touching the ground, the
quadruped essentially can be regarded as a hybrid mechanism
such that the torso with four legs constitutes the parallel
mechanism part, and the torso with the tail constitutes the serial
mechanism part. Therefore, the torso is called the traveling plate
for the traditional parallel mechanism. Each leg consists of a
SRRR kinematic chain in which the universal joint on the hip is
decomposed into two intersecting revolute joints and the feet
are modeled as spherical joints.

The tail is a massless bar with a point mass on the tip and is
actuated by a universal joint connected to the body. Since there

are 8 DOF’s for this quadruped (6 DOF’s for the parallel
mechanism and 2 DOF’s for the tail), we choose q =
[P” ¢x Py b, 00 Op]” as  the independent generalized
coordinate set where p is the position vector of the travelling
plate center, ¢, ¢, ¢, are the rotational angles of the travelling
plate with respect to the x y and z axis of the global frame,
respectively. 8;, and 8,; are the rotational angle of the tail with
respect to the travelling plate.

To define these variables accurately, inertial frame XS is
attached on the ground. Body fixed frame XP of the travelling
plate is attached on the travelling plate center P with its initial
orientation being the same as frame £S. R} is the rotation
matrix from frame 2P to £S. The rotation matrix R} is defined
by the roll, pitch, and yaw angles that is, rotating ¢, about the
fixed x-axis first, then rotating ¢,, about the fixed y-axis, finally
rotating ¢, about the fixed z-axis. Thus, the rotation matrix is
R}

C¢zc¢y C¢zs¢ys¢x - S¢zc¢x C¢zs¢yc¢x + S¢zs¢x
= S¢zc¢y 5¢25¢y5¢x + C¢zc¢x 5¢zs¢yc¢x - C¢ZS¢X

_S¢y C¢ys¢x C¢yc¢x
Y,

Then the angular velocity and angular acceleration of the

quadruped body are

. . . T

w = [¢x ¢)y ¢z] 2

W = [¢x ¢y ¢z] (3)

Since the quadruped is a parallel mechanism, in essence,

we can follow a similar procedure utilized in parallel

mechanisms to find the necessary kinematic terms for the
quadruped.

Universal
Joint

\ Foot

Figure 2. Kinematic parameters of leg i

2.1 Position Analysis

This section solves the inverse kinematics of the
quadruped. For each leg, the joint angles are defined as in Fig. 2
where 04, Onp; € (—1/2,m/2) and 6;,; € (0,7r/2). Based on
the kinematics configuration and vector definitions in Fig. 1, the
vector loop constraint of leg i can be written as

b;+c¢;=d;—p—a 4
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Expressing Eq. (4) in frame ZP and denoting s; = dgp) -
p® — al(P) in which al(P) is a constant vector and dgp) =REd,,
p® = REp, Eq. (4) can be written as

bgp) + cl.(P) =s; 5)

In this equation, s; is a known vector which can be calculated in
advance and bl@ , ci(P) are two vectors containing the three
unknown revolute joint angles 6y ;, Opp,; and 8y ;. Thus, Eq. (5)
has three equations and three unknowns. Solving this equation
yields
T 2 2
cos(n — Gk‘i) _ 3 len” = bon (6)
thhlsh

The rest of the two unknowns can be found successively

Ona,i = atan2(sy, Siz) 7
2A
Onpi = atan(s{y/slfz) — asin (—) (8)
||Si||lth
where sj, and s, are the y and z components of s; =

Ry(eha‘l-)Tsl-. Ry(Gha,i) denotes the rotation matrix with angle
Onq; With respect to the y axis. A is the area of triangle
AH;K;F;, which can be computed by Heron’s formula

A= Js(s-zth,i)(s-zsh_i)(s— lis:l) ©)

where

$ = (Ieni + Lsni + |Is:1)/2
The position of the tail can be obtained straightforwardly by

n=p+r+t (10)

where

r+t= R‘E,(I‘(P) + Rx(eta)Rz(etb)[O' _ltt O]T)
with parameters defined in Fig. 3. R, (6,,) and R,(8,;) are the
principle rotation matrices with respect to x axis and z axis,
respectively.

Universal
Joint

Figure 3. Kinematic parameters of the tail

2.2 Joint Jacobian Matrices
This subsection derives the Jacobian matrices for each
actuation joint. These matrices will be needed in subsequent

sections. The method used here is direct differentiation of joint

angles. Therefore, differentiating Eq. (6) directly yields
T .

. s;8;

cos(m—6;) O = ——

1y

lth lsh

which requires the differentiation of s; first. Since s; is
expressed in frame XP, we need to transform it back to the

inertia frame XS first. Differentiating sgs) yields
Ris,=—-v+(d,—p) X (12)
where v is the velocity of point P. Therefore

S, = is,itp (13)

where js; = [-RE RE5(d; — p)] is the Jacobian matrix for s;
and t, = [v7 wT]T is the twist of the travelling plate.
Therefore, rearranging Eq. (11) yields
Ori = irity (14)
where
T-
. Si Js,i
. = —‘ 15
Vet = lonsinGy (15)

is the Jacobian matrix of the knee joint for leg i. Similarly, Eq.
(7) is differentiated to obtain the Jacobian matrix of 8y, ;

. c05%Opq,;
Jhai = 2
iz

[Siz' 0, _Six]is,i (16)

in which s;, and s;, are the x and z components of s;,
respectively. éhb_l- is more challenging to obtain. Instead of
differentiating Eq. (8) directly, the y part of Eq. (5) is a better
choice. This yields

—$iy — lsn c0S(Opp; + Oy )0

(17)

éhb,i =
lthCOSth,i + lsh COS(Bhin + Bk,i)

Since $;,, and ék_i have been obtained in Eq. (13) and Eq. (14),
substituting these two terms into Eq. (18) gives the Jacobian
matrix for Oy,
—1sinBy ;[0,1,01js; — cos(Oppi + Ori) si7 s,
12,5in0,.;¢0S0np ; + Lsplensindy; cos(Opp; + 01)
(18)

Jhbi =

2.3 Velocity Analysis and Point Jacobian Matrices
Velocity can be calculated by differentiating the position
vector. Therefore, the velocity of point H; is given by

vy =d(p—a)/dt=v+wXa; (19)
The corresponding Jacobian matrix of point H; is
Jni=1 —a; 03y] (20)

Velocity of point K; can be obtained similarly
. . T
Vi =v—(a;+b) X 0 + R3Qui[0nai O] (2D
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where
—C050q,iC0SOpp,;  SiNOpq,iSiNOpp;
Qki = lin 0 —c0SOpp,; (22)
Sineha‘iCOSth_i COSQhaIiSinehb'i

Thus the Jacobian matrix of point K; is
£ 3 Jna,i
Joi = |1 —a;, —b;] + R§Qy; [ih;”'] 03><2] (23)
U

The velocity of point N is
Vp=v—(+t)x0+RiK,[6,, 6,17 (24

where
0 €050y,
K, = ltl Sinb.,cosOyy cosemsinﬂtbl (25)
—€0560¢,c050;, SinB.,sinby,,
And the Jacobian matrix of point N is
Jo=01 —F—F RIK, (26)

2.4 Actuation Jacobian Matrices

To apply the virtual work, we need to express all the virtual
displacements with respect to the generalized coordinates,
which is carried out in the last two subsections by calculating
the Joint Jacobian Matrices and the Point Jacobian Matrices.
This subsection, instead, will use these matrices to derive the
so-called Actuation Jacobian Matrices which are used to express
the virtual displacements of the actuators with respect to the
generalized coordinates. Since the actuators are placed on the
revolute joints (each universal joint is equivalent to two revolute
joints), the actuation Jacobian matrices can be obtained directly
from the joint Jacobian matrices.

Note that our quadruped has only eight degrees of freedom
while we placed 3 X 4 + 2 = 14 actuators. The six redundant
actuators are used to overcome singularities and improve
controllability. To distinguish these two different groups of
actuation forces, we use T, to represent the eight non-redundant
forces and T, to represent the six redundant forces. For
convenience, qq = [Onq1, Ona2 Ok,1) Ok,2) Ok3 O a0 Otas Oep]" is
chosen as the non-redundant actuation joints. J. , and J., are
the corresponding actuation Jacobian matrices. Thus the non-
redundant actuation Jacobian matrix can be obtained
straightforwardly
[ iha,l

iha,z
i
—| Jke

i3

Jiea
0--0
0.0

as well as the redundant actuation Jacobian matrix (q, =

(27)

]r,a

OSOrRrOoO OO O O O
mrOoOOoC oo O O O

T
[Qha,Si 9ha,4' ehb,lﬂ ghb,Zi 9hb,3! 9hb,4—] )

Jhaz 0 O
jhaa 0 O
Jhb,1 0 0
=1, 28
Jep Jwbz 0 O (28)
sz 0 0
jrpa 0 0

2.5 Acceleration Analysis

Acceleration can be computed by differentiating the
velocity vector. Therefore, differentiating Eq. (19) yields the
acceleration of point H;

ah'i =v+ (T)ai + (T)zai (29)

The acceleration of point K; can be obtained by differentiating
Eq. (21)

~ 8, .
a;; = v+ (0+®>)(a; +b;) + 28RFQy; [ .’““]
hb,i
Onail  ~ [Onai
+R} (Qk,i ["ha'l] + Qk,i [ -ha'lD (30)
On,i On,i
Similarly, the acceleration of point N is obtained from Eq. (24)
a, = v+ (®+®)(r+t) + 28R K, Z“’
th
+R3 (Kt [?“‘] +K; [Q“‘D (31)
B B

Note that Qk,i and K, are the derivatives of Qy; and K, ,
respectively, which can be directly obtained from Eq. (22) and
Eq. (25), respectively.

3 FORMULATION OF THE QUADRUPED DYNAMICS
USING VIRTUAL WORK PRINCIPLE

Based on the virtual work principle, for an N rigid body
system, the equations of motion can be stated as

N
Z[]arc,i(Fi —mv) +J0,(M; - L, — ®;L;0)] =0 (32)
i=1

where F; and M; are the active force on body i. Moreover, ] ;,
Jo,: are the Jacobian matrix for the virtual linear and angular
displacement respectively. I; is the inertia matrix for body i and
v;, w; are the linear and angular velocity. All these terms are
measured in the inertial frame.

Although Eq. (32) expresses the full dynamics (both
inverse and forward) of the multibody system, the forward
dynamics is usually very hard to compute due to the complexity
of the Jacobian matrices and Coriolis terms. A practical way to
compute the forward dynamics is to use numerical methods
(such as Matlab/Simulink) to solve Eq. (32). In this section, the
inverse model is formulated first, thanks to its straightforward
relationship with Eq. (32). After obtaining the inverse dynamics,
the forward model can be obtained directly from the inverse
model by extracting the corresponding terms.
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3.1 The Virtual Work for Leg i

Since each thigh, shank and the tail in the quadruped are
regarded as ideal bars (evenly distributed line mass), before we
go into the quadruped dynamics, we would like to derive the
virtual work for each leg first by using the technique introduced
n [17]. That is, the virtual work of an ideal bar can be lumped
to its two endpoints. Figure 4 shows the schematic diagram of a
leg and an ideal bar with their kinematic parameters.

o av

A

CM

Vo

6 v,

Figure 4. One leg with its foot touching the ground
(left) and the velocity distribution on a rigid bar (right)

Therefore, for an ideal bar as shown in Fig. 4, the virtual
work due to the inertia force can be computed by the integral

L m
SW = f 5(0a() T dx (33)
0
in which
X X
8(x) = (1 _Z) 8, +78,
a(x) = (1—f)a +£a
L)t T L2

are the linear interpolations of the virtual displacement 8§, 8,
and the acceleration a; a, along the bar, respectively. L is the
length of the bar. Evaluating Eq. (33) directly yields

Jia, +]){a,

m
sw = 6qT§(IIa1 +za +

) (34)
where q is the generalized coordinates vector, J; and J, are the
corresponding Jacobian matrices for the two endpoints (This
implies 8, =J,6q and 8, = J,8q). Applying this formula on
the thigh and shank of each leg gives the virtual work 6W; 1,0,
of leg i due to inertia force

Mep + Mgy Mmyp,
Wi mer = 69" [J1; <—3 ay,; + ra ahi)
Mep Mep
+h (_3 ap; +_6 ak,i)] (35)

where my, and mg, are the mass of the thigh and shank
respectively.
The virtual work §W; ; due to gravity is obtained as
Msp

me, +
oW = 8q7 (JF, T

+ ]Z,i TnZSh) [0'0! _g]T (36)

3.2 Formulating the Inverse Dynamics of the Quadruped

The inverse dynamics involved finding the actuation force
given the motion trajectory of the quadruped. Therefore, the
inverse dynamics can be obtained directly from Eq. (32)

4
]Z.a‘ta + IZ,pr =T, + T+ Z T, 37)
i=1

where 1, is the non-redundant actuation torque, T, is the
redundant actuation torque, T,, T, and T;; are the generalized
torques contributed by the travelling plate, the tail and the ith
leg, respectively. JT, and JT » are the corresponding Jacobian
matrices for the actuation torque. Their detailed expressions are

Ty, = J5,mpy(V—[0,0,—g]") + ]} , Iy + ®l,w)  (38)
T = ]th(an - [0'0! _g]T) (39)

0

r [ Men T Mgy My My + Mgy
T = Jii — 3 it AT 0
-9

0
) (40)

0

-9
in which m;,, and m, are the mass of the travelling plate and the
tail respectively, g is the gravity constant. Note that t;; is
obtained by extracting the coefficient terms of 6q from the
summation of Eq. (35) and Eq. (36). Moreover, the inertia
matrix of the travelling plate I,,, matrices J, , and J, ., have the
form

m m m
T th th th
+]h,i (T ah,i + Tak,i — T

P
I, = RSIVRE
Jox = [Isxs  Osxs]
]b,(u = [03><3 I3x3 03><2]

Note that Eq. (37) has fourteen actuation forces (T, has
eight components and T, has six) while the dimension of the
equation is only eight (corresponds to the eight independent
generalized coordinates). This means that if we regard all
actuation forces as unknowns, then there exist infinitely many
solutions. Indeed, this is an intrinsic characteristic for an over-
actuated system in which there are infinitely many choices of
actuation forces to generate the same motion. Therefore, to
solve Eq. (37) properly, additional information is required, such
as the profile of t,. The simplest T, profile is T, = 0. This
simplifies Eq. (37) to

4
T, = ]Z‘a_l (Tb +T + Z ‘[l_i> (41)
i=1

Obviously, the prerequisite for this solution is that J,, is
nonsingular.

3.3 Formulating the Forward Dynamics from the Inverse
Dynamics

In Eq. (37), if we can express all the kinematic terms
(acceleration, velocity, and position) with generalized
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coordinates, then the inverse dynamics can be written in the
forward dynamics form as,

Mg + C(q,q) + G(q) =F (42)

where M is the mass matrix, C(q, q) is the Coriolis term, G(q)
is the gravity and F is the actuation force. To solve Eq. (42)
numerically, the following transformation is required

i=M"(F-C(qq —G(Q) (43)

This form allows numerical integration of q. Therefore, to
formulate the forward dynamics, we can just collect all the
acceleration terms in Eq. (37), and express them by generalized
coordinates. This will give us, both the mass matrix and the
Coriolis terms. From the formulation of the inverse dynamics,
the following terms can be obtained

4

€@ =€, +Cc+ ) Gy (44)
i=1

Cy, =1}, ®l,0 (45)

F= ];rata + ]Zp‘tp (46)

G(Q) - mb]bx + mt]t

+Z(lklmth‘+ms’” T ) H (47)

Coriolis effect of the tail C; can be extracted from Eq. (31) as

C,=mJT <(’I)2(r +t) + 28R} K, [6.'“’] + R3K, [GF“D (48)
Oep Ocp

As for the Coriolis forces for the legs, although more
complicated, they can be collected from a;;, and a,;. The
detailed expressions are omitted here due to space limitations.

The mass matrix M can be obtained by collecting all the
second order derivative terms in Eq. (37). However, due to the
ideal bar assumption, a better way of deriving the mass matrix
for a bar, as defined in Fig.4, is by integrating the kinetic energy
T as

"1 1 ..
T = f —v(x)%dm = =-q"Mq (49)
o 2 2
in which dm = m;dx/L and
x x
v(x) = (1 _Z) v+, (50)

where, v(x) is the linear interpolation of the velocity along the
bar. This yields the mass matrix M

M= AL ) 6D

Note that M is symmetric due to vIv, = viv,. Therefore, the
mass matrix for the quadruped is given by
4

M = Mb + Mt + Z Ml,i (52)
i=1
in which

M, = (lhllhl FIE i + V) + lkllkl (53)
Mplzxs  Ozxz  O3x2

M, = 03x3 I, 034 (54)
02x3  Ozxz  Oax2

M, = mt]?[l3x3 —F-t Rf’Kt] (55)

4 MODEL VERIFICATION

To verify the dynamic model, Matlab/Simulink was used to
implement the formulated dynamic models. MSC Adams is also
used to do cross-validation. Table 1 lists all the parameters used
for simulation. Figure 5 shows the 3D model used in Adams.
The feet positions are chosen arbitrarily as

041 —0.01 —0.01 0.41
[d, d, d; d,]=]063 057 003 —0.03
0 0 0 0

The initial conditions are

[QJ 02030400000]]
0,0,0,0,0,0,0,0]"

Table 1. Parameter Values for the Quadruped

Parameter = Value

Parameter= Value

lgn = 0.3m mg, = 1.2289kg
l;p = 0.3m m,, = 0.9453kg
[, = 0.6m m, = 26.9078kg

"al - a2” = 0.48m

m; = 1.4347kg

1) = diag([0.8404,
0.3793,1.2125])kgm?
g = 9.8067m/s?

”az - a3” = 0.54m

[Ir]] = 0.34m

Figure 5. 3D model of the quadruped for simulation

4.1 Verification of the forward model

We first verify the forward dynamic model. This is done by
comparing the motions computed by Adams and Simulink
separately under the same actuation torque. The actuation
torque profile is given by,

t, = [0,0,15,15,20.5,20.5,—7.7, —10sin(31.4t)]"

T, =[0,0,0,0,0,0]"
This torque profile drives the quadruped to achieve a yaw
maneuvering behavior. Fig. 6 is the motion comparison between
Adams and Simulink.
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Trajectory of Torso CoM Trajectory of Torso Orientation
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Figure 6. Comparison of simulated motion by Adams
(solid lines) and Simulink (dashed lines)

From Fig. 6, the quadruped motion computed by our model
does match the simulation results, as generated by Adams.
However, the errors between these two approaches are also
noticeable, especially for the z component of the torso CM
position p. These errors may be the result of two aspects: (1)
numerical error, (2) model error. The numerical error includes
the error drift of the integrator, the accuracy loss while
computing M~! for Eq. (43), and the error induced by the
DAE/ODE solver (Adams uses GSTIFF-I3 solver with a
tolerance of 1E-3 while Simulink uses fixed step ODE4 solver.
Both implement a time step length of 0.0001s). The model error
is due to the assumptions that we considered each thigh and
shank as an ideal bar and the geometric center of the torso as its
mass center, which is not valid in Adams.

4.2  Verification of the inverse model

The forward model can be used to verify the inverse model.
That is, using the inverse model, we can calculate the required
torque and input this torque into the forward model.
Theoretically, if the inverse model is correct, the forward model
should generate the same desired motion. However, due to the
error drift of the numerical integrator (referring to Fig. 6 and
Fig. 8), the simulated motion deviates from the desired motion
after a short period of time (less than 0.2s). Figure 8 shows the
deviation of the simulated motion (circled line) from the desired
motion (solid line).

Another important source for the deviation might come
from the inverse model itself. In the simulation, Eq. (41) is used
to compute the non-redundant actuation forces t,, for which
J. o has to be invertible. However, in practice, letting J,, be
invertible is not enough. The numerical error of computing
]T_,,L_1 increases dramatically as J,, gets closer to its
singularities. Since J; , consists of jpg 1 Jna2> Ji1s k2> I35 k4o
jeq and j¢p, so any two of these being the same will lead to J; 4

being singular. In our simulation, we observed that j,,, and
Jha2 Were very close at multiple points. This verifies the error

Inverse 8 4 4, o| Inverse
Kinematics "| Dynamics

Feedforward Torque
Command 7,

9 94 4y

Trajectory fa E\ ¢ m

Forward
Feedback Compensation P Dynamics
Block 9 1 1 i
s s

\ Numerical

Integrator
Figure 7. The feed forward control scheme used in

the inverse model verification

due to the numerical inversion of J; 5.

Therefore, to eliminate these errors, a feedback controller
(shown in Fig. 7) is applied to the system, to observe the
trajectory of the compensation torque given by the feedback
block. The results are shown in Fig. 8 and Fig. 9, which show
that the compensation torque asymptotically approaches zero.
This means that the actuation torque computed by the inverse
model does generate the desired motion after the numerical
error is under control. Figure 8 also shows the resulting
simulated trajectory by using the controller. For this simulation,
the desired motion is a pitch motion is given by

—[020304” ' (Zﬂt) 0,0,0,—si (2”t+ )]
q— .,.,.,36Sln 03 ,,,,185171 03 T

and the redundant actuation force is 7, = [0, 0,0,0,0, 0]7.
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Figure 8. Simulated quadruped behaviors with control
(dashed lines) and without control (circled lines).
Solid lines show the desired trajectories.
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5 CONCLUSION

By applying the virtual work principle, this paper presented
a methodology to formulate the forward and inverse dynamical
models for a general quadruped with a robotic tail. This model
will be used to analyze the influence of a tail on the motion of
the quadruped. However, the same model can also be used as an
alternative for the Lagrangian and Newton-Euler based models.
The formulation process follows a standard procedure of
modeling multibody dynamics. At first, the kinematic analysis
is conducted to obtain all necessary Jacobian matrices and
accelerations, then, these terms are substituted in the equation of
motion formulated by the virtual work principle. Lastly, these
terms are rearranged to derive the inverse and forward
dynamical models. This paper also performed a numerical
experiment which showed that the forward dynamical model
did predict the same motion as simulated in Adams. The inverse
dynamical model did generate the required actuation torque
used in the forward dynamics simulation.

Future work will focus on understanding the influences of a
tail on the motion of a quadruped as well as on modeling the
hybrid system for locomotion. Eventually, a quadruped with a
tail will be used to test the maneuverability and stabilization of
the robot during fast motions. In addition, future work will be
focused on implementing a serpentine robotic tail instead of a
pendulum-like structure, due to its ability to provide better
maneuverability.
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