Proceedings of the ASME 2018 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference

IDETC/CIE 2018
August 26-29, 2018, Quebec City, Quebec, Canada

DETC2018-85626

IMPROVED ALIGNMENT ESTIMATION FOR AUTONOMOUS DOCKING OF MOBILE ROBOTS

Shubhdildeep S. Sohal
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Wael Saab
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Pinhas Ben-Tzvi
Robotics and Mechatronics Lab
Mechanical Engineering Dept.

Virginia Tech Virginia Tech Virginia Tech
Blacksburg, VA, USA Blacksburg, VA, USA Blacksburg, VA, USA
shubh94@vt.edu waelsaab@vt.edu bentzvi@vt.edu

ABSTRACT

This paper presents the methodology for an improved
visual tracking, intended for the autonomous control of mobile
robots. We propose the cumulated use of the image processing
method and positioning sensors for an improved visual tracking.
The method primarily uses detection, tracking, and recognition
techniques to locate the targets. The use of such methods will
enable the robot to monitor the real-time continuous changes in
the orientation and the alignment with respect to the target
module. The proposed methodology is implemented on a
subsisting genderless coupling mechanism which is integrated
into a multi-directional hybrid locomotion module to test the
alignment accuracy in an autonomous docking procedure. The
long-term objective is to demonstrate the autonomous docking
and self-reconfiguration of multiple mobile robots.

Keyword: Autonomous Docking, Image processing, Self-
reconfigurable robots, Visual tracking

1 INTRODUCTION

Conventional rigid structured robots [1] are designed to
perform a specific task in a repeated manner. It is easier to
operate the robots under ideally controlled conditions [2], [3],
but when the conditions are unknown, several additional factors
come into the play. In such cases, the need arises for
metamorphic robots [4-6], [7-9], which can adapt to unknown
tasks and environments. The robots may combine to perform
obstacle climbing locomotion [7], [10] to a surveillance [6],
[11] based operation. Such robots can prove useful in
environments which are either too dangerous or inaccessible to
humans. These operational requirements have led to the study
of reconfigurable mobile robots [7], [9].

Self-reconfigurability [8] is one such feature which enables
mobile robots to align, dock and reconfigure with discrete

modules to scale functionalities, thus adding an additional
degree of freedom. The means of coupling provide a robust way
to create a long-chained [7-9], swarm of modules. Such
properties primarily relate to a rigid, and robust docking
interface [12], [5]. These properties make robots more versatile
and cost economical over conventional rigid structured robots
and make the robot potentially capable of extreme applications.
Without this interaction, robots are left with mere sensorial
perception restraining their ability to act upon the surroundings.

In this paper, we discuss the challenges associated with
detection and tracking of the target for a properly aligned
docking. The extraction and use of visual data is an important
task while designing reconfigurable robots. To address these
challenges, we propose a sensing methodology based on the
works of Shi-Tomasi [13] and Lucas-Kanade [14]. The method
is implemented on a multi-directional mobile robot [11]
equipped with a genderless coupling mechanism [12] for an
autonomous reconfiguration as shown in Fig. 1.

Figure 1. Hybrid Wheel-track mobile robot [11]
equipped with GHEFT [12], and visual landmarks for
tracking
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The targets are processed using Template Matching [15],
Optical Flow [13-14], [16-19], and Color Detection [20]
techniques. The long-term goal of this research is to
demonstrate the autonomous docking and self-reconfigurability
of multiple robots to scale docking capabilities.

The next section classifies the use of sensors in
reconfigurable robots. Section 3 discusses the design integration
of the Visual Landmarks. Section 4 describes the sensing
methodology used for the detection of a target. Section 5
discusses the experimental validation of the algorithm as
integrated on the robot. It also gives a brief about the
performance comparison between the 1-point and 4-point
tracker. The last section concludes the experimental results and
discusses the future work of our research.

2 RELATED WORK

This section covers several highly capable, state-of-the-art
modular self-reconfigurable robots capable of autonomous
docking. This section covers the background and provides the
motivation behind the proposed methodology.

2.1 Background

The robots whose morphological properties can provide
different configurations are of keen interest for research.

Over the past decade, a considerable number of studies
have demonstrated the autonomous control of modular as well
as mobile robots (shown in Fig. 2). S. Murata’s M-TRAN [10],
[21], uses a blinking pattern of LED for detection using a
pinhole camera to form a long chain of swarm bots. A.
Castano’s CONRO [8], M. Yim’s PolyBot G2 [9], G. Qiao’s
Transmote [22], etc. use IR sensor for a close range proximity
of targets. Ji-an Xu’s Tanbot [6] uses a gyro for orientation and
digital camera to implement the autonomous docking. These
robots have made extensive use of positioning and tilt sensors to
minimize the positional and angular misalignment errors. Each
module of modular robots has multiple degrees of freedom that
can align with other robots with the use of sensors [10], [21-24].
These robots can maneuver and accordingly, interact with the
environment.

Table 1. Classification of Sensors Used in Robots for
Autonomous Control

Robot Sensor Coupling
CKBot[2][3] Smart camera, IR Magnetic linkage
Tanbot[6] Camera, IR, Gyro Pin and hole-latch
M-TRAN[10][21] IR, camera Hooks
SAMBOT[26] IR Hooks
MBLOCKSJ[23] IR, Hall effect Magnetic linkage
Telecubes[24] IR, Magnetic Magnetic linkage
Transmote[22] IR, Angle/Tilt Lock and key
JL IO[7] IR, GPS, Ultrasonic Hooks-gripper
Polybot G2[9] IR, Hall effect Pin and hole-latch
CONRO[8] IR Pin and hole-latch
Swarm-bots[25] Camera, IR Hooks-gripper

Figure 2. Self-reconfigurable robots, (a) CK-Bot [2],
(b) Transmote [22], (c) Tanbot [6], (d) MTRAN [10]

As shown in Table 1, most of the modular robots rely on
the use of proximity sensors, such as IR and Photodiodes, to
determine the robots available in their surroundings, but their
operation is limited to the sensing range. The lack of vision [7-
8], [22-24] to recognize the target also pose a shortcoming for
the proposed autonomy. Moreover, the autonomous docking is
more difficult for mobile-type robots [4] as compared to
modular robots [2], [6], [10], [25].

There arises a need to use the visual tracking to determine a
long-range position and orientation navigational accuracy. The
use of image processing techniques allows us to detect and track
the target with certainty in the given frame of reference. These
applications can be found in mobile [6], underwater [27-28] and
aerial robots [29]. The combined use of visual feedback along
with the positional sensors serves a better advantage over
conventional positional sensors.

There are several image processing methods available to
detect and track the targets effectively but each method varies
based on their operational speed and accuracy. The basic
requirements for a real-time detection are:

1. The method should operate in real-time conditions,

2. It should be fast, and

3. It should be robust to determine the targets with certainty
even in case of a background noise.

The methods such as Color Detection [20], Template
Matching [15], Harris Corner detector [30], Optical Flow [13-
14], [16-19], SIFT [31], etc. are among the several methods
which can be used for object recognition; however, only a few
of those could be implemented for faster tracking of objects.
Furthermore, due to the small size of robots, image processing
is difficult to implement using onboard control. Therefore, in
many cases, these methods are performed using a host PC,
which provides the feedback for the autonomous control
through a microcontroller.

2.2 Motivation

A method such as Color Detection has been practically
demonstrated in [27], [28] for the autonomous docking of AUV.
Since the detection, in this case, is only dependent on Color
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Detection [20] using RGB, it is difficult to implement if the
same colored objects (i.e. a different object with the same color)
are present within that frame of reference [27].

1. The use of Template Matching in [28], is an effective way
to overcome such obstructions, however, such methods are
difficult to implement in real-time due to their performance
limitations (refer to Table 4).

2. In [29], Krukowski and Perkins presented how two
methods, Template Matching, and Optical Flow, can be
combined together to detect the UAV even in case of a
noisy background.

The use of such combination for object detection provided
us with the motivation to use the Color Detection [20] method,
which, combined with Template matching [15] and Optical
Flow [14], can track the target effectively irrespective of any
object and color obstruction.

The objective of the proposed methodology is to bring two
distant robots closer to each other using path planning method
and after they come in close proximity, the autonomous docking
procedure is initiated. The detection process makes use of the
Template Matching [15], Optical flow method [14] and Color
segmentation [20] technique along with continuous rotation
high-speed servo with positional feedback to adjust the position
of the robot relative to the target. So far, in this paper, only the
algorithm and sensing method will be discussed. Since the
method is based on LED pattern detection, several different
patterns can be assigned to different robots for multiple docking
procedures.

3 DESIGN INTEGRATION

The related visual target, Fig. 3, for tracking the mobile
robots is presented in this section to check the validity of the
proposed methodology. The Hybrid Tracked-Wheeled Multi-
Directional Mobile Robot [11] is used as a primary source for
analyzing the positional and angular alignment data.

Visual data from sensors provide a reliable and robust way
to recognize and track visual landmarks. Coupling is an
important characteristic of a robot, which makes it possible for
two or more robots to interact and reconfigure with each other
[1], [4-61, [12].

Targets

Dual H-shaped
clamps

GHEFT

Figure 3. Visual Landmarks for tracking attached to
the side frame of the Hybrid mobile robot

Genderless, High strength, Efficient, Fail-safe, and high
misalignment Tolerant (GHEFT) [12] is one of the few docking
mechanisms, which is flexible, can tolerate high misalignment
and gives a genderless advantage over gendered coupling [6-7],
[9]. The dual profile of the H-shaped clamps allows for the
docking to be performed from either inside or from outside
making the mechanism genderless and fail-safe when either of
the mechanisms fails to actuate.

4 METHODOLOGY

In presenting the output of an imaging sensor to a human
observer, it is essential to consider how the image is
transformed into information by the viewer.

4.1 General Approach

Visual Image data itself represents the spatial distribution
of physical quantities such as luminance and spatial frequencies
of an object. The perceived information may be represented by
attributes such as brightness, color, and edges. Such features are
extremely important for the detection of an image as shown in
[30-31]. However, a real-time detection and tracking of the
target itself is a challenging task as the small delay in tracking
could lead to increase in alignment error.

411 Template Matching method

Template matching is used to detect a particular section of
the image within a larger image. The presence of a known
object in a scene can be detected by searching for the location
of the match between the object template, u(m,n) and the
scene, I(m,n). Template matching can be conducted by
searching the displacement of the object template, wu(m,n).
Therefore, it makes the use of a template for the detection of
that region of interest (template) in a particular frame of
reference, such that the best match practice is given by
comparing the template matrix with the image matrix,

R(p.q) = > [K(m,n)-u(m- p,n-q)I’ (1)

m=0n=0

where, R(p,q) is the resulting matrix of the comparison. Also,

the area correlation between the image and the template can be
maximized by minimizing the mean square error of (1) as,

r(m,n) =I(m,n)*u(-m,-n) 2)

which implies that the area correlation is equal to the
convolution of the image, /(m,n), and the impulse response,
u(—m,—n) .

The method is effective when a small portion of the image,
called the template, is an exact cut from a larger image in which
the template has to be found; however, the method fails in case
of noise interference. Also, the method is robust to find a match
in the image, but it fails to produce the desired results when the
matching involves the changes in scale and rotation among the
template and the position in the image.
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4.1.2 Optical Flow method

Optical Flow method is used to measure the displacement
of a pixel within consecutive frames. The calculation of these
motions helps in determining the velocity of the target in the
given series of frames

I(x,y,0) =1(x+ Ax, y + Ay, t + At) 3)

where Ax, Ay, and Af, represents the shift in the position of the
image with Intensity /(x, y,t) by, Ax, Ay, and Af.

The classical algorithms often used are tracking good
features by Shi-Tomasi [13], tracking the flow of pixels by
Lucas-Kanade [14], using global smoothness constraint by
Horne-Schunck [19], based on the motion of edges by Buxton-
Buxton [17], using phase information by D. J. Fleet [18] and so
on. The basic principle behind optical flow method is to first
detect some Shi-Tomasi [13] corner points in the frame and
then use the Lucas-Kanade method [14] to determine the flow
of those points. This flow can be represented using Eq. (4),
which, (assuming a small shift), is the Taylor-series expansion
of Eq. (3),

Lu+Lv+1, =0 )

where, [, 1

Ay, 1, are the image gradients, /,is the time gradient,

u=x,and v=y, are the image flow (velocity) vectors, and
can be calculated using,

-1

N > LI [— LL}

— 1 1 1 1 1 1 (5)
2 _

v intIxi Zily[ ZiIY[Ifi
where the inverse matrix is based on the Harris-corner detector
[11] and determines the points which will be tracked in the
consecutive frames.

The wvalidation of Lucas-Kanade [14] approach is
dependent on the following key assumptions:

1. No change in the pixel intensity of in-between frames,

2. There is a small motion between subsequent frames, and

3. The motion of a point is similar to the motion of the
neighboring pixels.

To track the robot, it is important to satisfy these
assumptions in order to use the optical flow approach. The
overall methodology is divided into two phases:

1. Detection and Tracking of the target,
2. Detection of the LED pattern for Orientation, Alignment
and Height estimation relative to the target.

4.2 PHASE 1: Detection and Tracking of the Target
The first phase, i.e., Detection and Tracking of the robot is

the most important step for a successful docking, as it will

extract the location of the docking module in the given frame.

Therefore, an initial template, shown in Fig. 4(a), of the side
frame of the target is provided to begin the search process.

The goal is to leverage the information about the target in
the frame using template matching and after finding the location
of the target, Lucas-Kanade Pyramid Optical Flow [14] method
is initialized to track the motion of the target. Since the
template, u(m,n), is searched in the whole image, [(m,n),

individually it is a very slow process, as shown in Table 4. The
same is the case with the optical flow as it is good to track only
the motion of good features but not the portion of the image.
However, performance validation of each method was also done
during the process as shown in Table 4.

To overcome this, detection of the docking module will be
limited to a set of certain motion parameters using the search
area that can be reduced for template matching and optical flow
method. Once the target is found in the frame, the points are
stored in the result matrix using Eq. (1). Then, the matched
template is defined by finding the global minimum values in the
matched matrix shown in Fig. 4(b). The corner coordinates of
the matched template, Point(x, i cned> Ymatched ) » at€ passed to the

vector, curr_point, using the push-back operation. To track the
motion of the matched template in the successive frames, the
new position of each coordinate is passed on to give the updated
velocity feedback. Since there can be same or different colored
LEDs in a particular frame [27], the processing method has to
be robust to eliminate such interference factors. The matched
template is passed on for the LED detection as a Region Of
Interest (ROI'). This limited sized search window helps to
reduce the search area and to speed up the process. A separate
but same centered (shown in Fig. 4(c)) external region of
interest (ROI,, ) is also defined to search for the LED pattern

ext

such that the area of ROI
area, ROI .

o 1S more than the matched template

External ROI

Figure 4. Detection and Tracking: (a) Template, (b)
Normalized image, (c) Extracted ROI, (d) Output Image
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TABLE 2. Module detection Algorithm

Module Detection and Tracking

Input: Template, target to be found
Output: Detection and Tracking of target

1. Assign template, u(m,n) , for detection

2. Initialization, video capture on

3. Convert frame color, RGB to GRAY

4. Initiate, matching method=CV_TM_SQDIFF
Extract corner coordinate of the matched template,
Store in curr_point

5. while (1)

6. If, prev_frame is empty
copy curr_frame to prev_frame
else continue
Initialize LKOpticalFlow (prev_point, curr_point)
swap, curr_point and prev_point
swap, curr_frame and prev_frame

end (case structure@6)

The motive behind adding another feature is to eliminate all
other external lights or noises which are not relevant to the
docking process and furthermore, to compensate for the scaling
of the image. Another advantage of this feature is to check the
availability of the docking module, if available for docking or
not. If the LED pattern gets detected within this search area,

ROI,,, , then the module is available; otherwise it needs to find

another available module in that frame. Therefore, the two
methods, Tracking and LED pattern detection, work in a
synchronized manner such that the validity of one justifies the
validity of other.

In this paper, only the tracking and sensing of the target for
autonomous docking has been demonstrated, but the method is
also valid for multiple docking modules as each robot can be
assigned with a different LED pattern.

4.3 PHASE 2: Detection of LED pattern

The second phase, LED pattern detection, involves the use
of the Color Detection [20] technique for the detection of a
particular LED color using HSV range (Hue, Saturation, and
Value). In this method, after the target has been detected using
Template Matching, the RGB frame of the ROI,, is acquired
(Fig. 5(b)).

The required color (to be detected) layer matrix is then
extracted from the RGB frame. Before converting the RGB
frame to gray image, the Median filter [32] is applied to the

ROI,,, , to add a sense of blur, thereby removing noise from the

RGB frame.

ext

v(m,n) = median{y(m-k,n-1),(k,l) e W} (6)

where y(m,n) is the input image, v(m,n) is the output image and
W is the window size. As seen in Fig. (5), the use of HSV

method makes it easier to filter colors based on the interest. The
Hue of a color refers to the redness, greenness and so on, such

Figure 5. Thresholding of RGB image, (a) Input
image, (b) Extracted ROI

that the combination of HSV gives different colors. The color
conversion process from RGB to HSV is given by,

_G=B if V=R
V —min(R,G, B)
H'= &jq ifV=G
V —min(R,G, B)
&jq ifV =8 )
V —min(R,G, B) @)
H=60°xH"'
V —min(R,G, B) FV 20
S = 14
0 itV=0

V =max(R,G,B)

Now, the RGB frame is converted into the binary image,
T(m,n), using the color thresholding technique. The produced
binary image consists of a black pixel of 0 value and a white
pixel of 255 value, such that the light source gets separated
from the surroundings. As for the blue, red and green color of
the LED, any color that falls beyond these value ranges gets
converted into a black pixel for a given frame. It is important to
note that these value ranges tend to differ with the change in
light intensity in the background.

After the threshold image for the color of interest has been
acquired from the RGB frame, the gray image is filtered using
relevant operators such as morphological filtering [33] and
Median [32]. It is possible that the gray image obtained after
color thresholding contains noise in the form of white pixels. It
is important to filter out these random, un-necessary pixels so as
to avoid any interference with the detection performance.
Therefore, Morphological filters [32-33] (Fig. 6) such as
Erosion and Dilation [32-33] are used to remove any noise and
lines or pixels while preserving spatial resolution. Erosion,
eg(X), is a shrinking operation, whereas dilation, 05 (X), is an
expansion operation. In order to remove noise by filling small
holes and narrow bays in the frame of reference, dilation is
used. In this process, both techniques are used twice such that
erosion is accompanied by dilation.
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Figure 6. Applying Erosion and Dilation on threshold
image: (a) for red, (b) blue, (c) yellow

For each technique, a structuring element, B, of rectangular
5 by 5 pixel was used for erosion and rectangular 7 by 7 pixel
was used for dilation.

Erosion: e5(T)=TOB = {x:B, c T}

Dilation: 55 (T) =T®B = {x: B, T = ¢} ®

After the threshold image has been filtered from noise,
contour finding method is implemented to define the shape of
the white pixelated objects. Green’s theorem [32] is used to
calculate the moment for each contour, using the weighted
average of the pixel intensity using

N N
M, = Z Zm’n’T(m,n) )

m=1n=1

where i, and j are the orders of moments and T(m,n)is the
input threshold image.

The calculation of the moment gives the area and the
centroid of each target. After these parameters have been
calculated, the detected contours are filtered by defining the
minimum area as 10 by 10 pixels. This minimum area sets the
limit for the area of the contour such that below this value any
pixelated object is considered as noise. As the targets are
successfully detected, markers, as shown in Fig. 7 are used to
highlight the targets in the frame of reference.

Tracking
markers

Figure 7. Output image showing tracking using LED
pattern

TABLE 3. Alignment Estimation Algorithm

Robot Alignment and Height Estimation

Input: Detection and Tracking of target
Output: Angular and Height estimation of the target

7. Get ROI from the result matrix, R (Eq. 1)
8. Apply Median*
Initialize thresholding, copy ROI,, to threshold image
9. If, tracked_object==true
Find object contour in threshold image, X
Extract centroid and area of contour**
erode X and dilate X
else continue
10. Estimate Alignment angle, 6

11. Estimate the orientation angle, @ = Qarget ~ Asource
12. Estimating the height, AL = Agreer = camera
end (while loop@5)

*Refer to Eq. 6, **Refer to Eq. 9

The calculated centroids represent the position of the led
markers with respect to the image plane in terms of pixels as,
(u,,v,), (u,,v,)and, (u,,v,) for red, blue, and yellow LED

respectively. These corresponding pixel co-ordinates can be
related to the camera’s intrinsic and extrinsic parameters as
shown in Eq. 10. Based on the intrinsic parameters of the
camera, given by, a =(c,,c,, f,a), the projection of the 3-D
point (X, Y, Z) in the 2-D point (x, y) co-ordinate system can be
equated as,

x=X/Z=@u-c)/ fa 10
yv=Y/Z=(v-c)/f (

where m = (u, v), gives the co-ordinate of the image point

expressed in the pixel units, ¢, and c, represents the co-

u

ordinates of the principal point, f is the focal length and « is

the ratio of the pixel dimensions. The representation of the pixel
co-ordinates serves as the landmark for the positioning of the
robot relative to the target. The depth estimation is also done
using these parameters. The estimated depth is further utilized
to improve the reliability of the marker, by comparing the actual
length between the corner LEDs with the corresponding
projected pixel length. This comparison results in a
multiplication factor, which, multiplied with the height and the
width of the tracker generates an adaptive marker based on the
estimated depth.

5 EXPERIMENTAL VALIDATION

The Image processing is performed using Microsoft Visual
Studio, C++, OpenCYV libraries. A set of three distinctive LEDs
is used as landmark and is attached on the side-frame of the
mobile robot for experimentation [11].
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Figure 8. Detection of blue color: (a) Input, (b) Color
detection without ROI, (c) with ROI, (d) Output

5.1 Experimental results

Sec. 5.1.1 compares the performance of proposed
methodology with existing tracking methods. Sec. 5.1.2
explains the effect of Optical Flow point selection on the shape
of the tracker. The improvement comparison in the detection of
the target using the methodology and the existing color
detection method is shown in Fig. 8.

5.1.1 Speed comparison test

The major concern for a real-time tracking algorithm is the
tracking rate and its reliability against the noisy background.
The test against the noisy background has already been
discussed in the previous section, speed comparison test is
performed to determine the real-time performance of different
processing methods for a 640 x 480 image frame. As shown in
Table 4, the Target detection rate using different search area,
e.g. Entire Image (EI), and Motion Limited (ML), is observed
and the corresponding frames per sec (fps) are calculated. The
fps is measured by initializing a counter for every frame and
recorded for a limited number of seconds. A set of three values
was recorded for each method and was averaged to obtain the
approximate fps.

TABLE 4. Performance Comparison of Real-Time
Tracking Algorithms

No. of fps for 60 sec tracking

Method Search
Area 1 2 3 Avg.
TM** El 9.06 9.11 9.04 9.07
OF El 2998 29.92 2993 29.94
CD El 16.56 1631 1623 16.36
TM + OF* ML 29.83 29.68 29.73 29.74

TM + OF + CD* ML 22.54 2226 2234 2238

*Methodology used in the paper, **Modified for Real-Time detection

where TM + OF and TM + OF + CD represent the
Template Matching combined with Optical Flow and Template
Matching combined with Optical Flow and Color Detection
method, respectively.

The Template Matching method has been modified for a
real-time tracking using the conventional Template Matching
method. As shown in Table 4, the combined methodology of
TM and OF (fps = 29.74) is comparable to the individual OF
(fps = 29.94) tracking. There is a 24.7% decrease in the
performance if OF is compared with TM, with OF and CD
combined. However, the frame rate is 22.38, which is 37.9%
better than the individual CD method and more than twice the
frame rate of the TM method (modified for real-time detection).
Hence, the combined methodology of Template Matching,
Optical Flow, and Color Detection is used for this research.

5.1.2 Effect of point selection on the tracker

The changing shape is an important aspect of detection
when the robot is moving towards or away from the target, as
the changes in the position of the camera could lead to error in
tracking due to lack of scalability, as shown in Fig. 9(e). In this
test, the proposed methodology is tested for sparse LK Optical
Flow USil'lg Pcenter = (XCO’yCO) and Pcorner = {Pcl7Pc’2’Pc3’Pc4}’

i.e. for the point at the center and points at the corners of the
matched template as shown in Eq. (11). The performance of
both extraction methods is observed and recorded
simultaneously. The expected ideal behavior of tracker and the
actual behavior are shown in Fig. 11. The benefits of a corner
point tracking over a central point tracking are:

1. The independent (corner) point tracking allows for multi-
scale tracking as compared to a fixed scale in central
tracking (refer to Fig. 9).

2. The tracking allows for the change in the orientation of the
tracker in the same way as that of the object as shown in

; ()

Figure 9. Comparing the actual 1-point (blue), and

4-point (red) tracker: (a) Front, (b) Tilt, (c) Tilt and
Rotation, (d) Rotation, (e) Scaling, (f) Tilt
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Rotation about the cen

Fighré 10. The inconsistent shape of the 4-point
tracker compared to a 1-point tracker: (a) Initial
shape, (b) shape after a full rotation

Fig. 9(d). The positional coordinates for both methods are
given by,

1 1
Pcenter :(xco Yo ):(xm + E (n(COIS))temp YT 5 (n(rows))temp )

Pcl :(xcl Vel ):(xm 2Ym )
Pc2 =(xc2 ’yc2 )=(xm +(n (COlS))tcmp ’ym ) (1 1)
Pc3 :(xc3 9yc3 ):(xm +(n(COIS))temp ’ym +(n(rows))temp )

Pc4 :()CC4 Vea ):(xm Ym +(l’l (rows))temp )

where x, and y, are the coordinates of the matched

(xmatchedly matched) > and
represents the no. of columns and rows of the assigned template
(refer to Sec. 4.2) respectively. Fig. 9 represents two tracking
methods (as shown in blue and red). The blue tracker is

initialized using one central point, .., , such that the rotation

template point, n(cols) , n(rows)

of the object about this point yields no change in shape or
orientation of the tracker.

However, depending on the shape of the object, the shape
of the tracker may vary, as shown in the Fig. 9 and Fig. 10.
Therefore, for the 4-point tracker, from Fig. 10, it can be
concluded that,

Ideal: [v;[ - v, =0, v,/ € 11,2,3,4)
(12)
Actual:lv,| = v, |=n,vi,j € {1,2,3,4),neR

Although both the methods are well applicable to a small
range of (pixelated) motion as shown in Fig. 9, the four points
optical flow is inconsistent due to independent motion
parameters for each point as compared to the single point
motion. As the four points behave differently in the given
frame, each point has a different flow vector as shown in Fig

11. Moreover, the inter-dependence of ROI,,, , as mentioned in

Sec 4.2, on the tracker also increases the rate of error in this
case. However, the current version of the 4-point tracker is only
stable for an image with edges and corners; otherwise, it fails to

P, IMAGE
¢ FRAME

P
M AT T N Pc4
P' Rotation about
cl center -
' c3  [n(rows)
Ples POgOP"O |
9 9 "
! c c c P 3
1
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\J "
= 4-point Actual P p c2» p EZ
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Figure 11. Actual behavior vs. Ideal behavior for 1-
point and 4-point tracker

maintain consistency with the shape, as shown in Fig. 10, but
further changes could be made to prevent the drifting of points.
Since the objective of this research is to track the object in
real-time, 1-point OF method is used as a tracker and position
estimation is done using LED targets, as the above-mentioned
tracking method is much more reliable for this research.

6 CONCLUSION AND FUTURE WORK

The present work incorporates the use of image processing
method which aids in the detection and alignment of two robots
parallel to each other. The target tracking algorithm is used for
the detection of the given template followed by the sparse
optical flow algorithm. The algorithm reduces the search area
by extracting the ROI to speed-up the process and thereby
reducing the processing time. The use of ROI specifically
increases the quality of tracking by eliminating the
overwhelming majority of bad features. Such discrimination is
important when the motion of the robot is autonomous. The
small displacements of the robot satisfy the conditions for the
LK algorithm. The results obtained were encouraging to be
implemented on a reconfigurable robot capable of docking.

An area of future work involves combining the tracking
algorithm with the vision control system for experimental
validation of the control algorithm. It involves the use of a
reconfigurable locomotion and manipulator modules to
demonstrate the autonomous docking and versatility of mobile
robots. The end goal is to make use of additional sensors to
determine the self-reconfiguration and shape transformation
based on the size of the obstacle used for scalability.
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