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ABSTRACT
This paper presents the methodology for an improved 

visual tracking, intended for the autonomous control of mobile 
robots. We propose the cumulated use of the image processing 
method and positioning sensors for an improved visual tracking. 
The method primarily uses detection, tracking, and recognition 
techniques to locate the targets. The use of such methods will 
enable the robot to monitor the real-time continuous changes in 
the orientation and the alignment with respect to the target 
module. The proposed methodology is implemented on a 
subsisting genderless coupling mechanism which is integrated 
into a multi-directional hybrid locomotion module to test the 
alignment accuracy in an autonomous docking procedure. The 
long-term objective is to demonstrate the autonomous docking 
and self-reconfiguration of multiple mobile robots. 

Keyword: Autonomous Docking, Image processing, Self-
reconfigurable robots, Visual tracking 

1    INTRODUCTION 
Conventional rigid structured robots [1] are designed to 

perform a specific task in a repeated manner. It is easier to 
operate the robots under ideally controlled conditions [2], [3], 
but when the conditions are unknown, several additional factors 
come into the play. In such cases, the need arises for 
metamorphic robots [4-6], [7-9], which can adapt to unknown 
tasks and environments. The robots may combine to perform 
obstacle climbing locomotion [7], [10] to a surveillance [6], 
[11] based operation. Such robots can prove useful in 
environments which are either too dangerous or inaccessible to 
humans. These operational requirements have led to the study 
of reconfigurable mobile robots [7], [9]. 

Self-reconfigurability [8] is one such feature which enables 
mobile robots to align, dock and reconfigure with discrete 

modules to scale functionalities, thus adding an additional 
degree of freedom. The means of coupling provide a robust way 
to create a long-chained [7-9], swarm of modules. Such 
properties primarily relate to a rigid, and robust docking 
interface [12], [5]. These properties make robots more versatile 
and cost economical over conventional rigid structured robots 
and make the robot potentially capable of extreme applications. 
Without this interaction, robots are left with mere sensorial 
perception restraining their ability to act upon the surroundings.  

 In this paper, we discuss the challenges associated with 
detection and tracking of the target for a properly aligned 
docking. The extraction and use of visual data is an important 
task while designing reconfigurable robots. To address these 
challenges, we propose a sensing methodology based on the 
works of Shi-Tomasi [13] and Lucas-Kanade [14]. The method 
is implemented on a multi-directional mobile robot [11] 
equipped with a genderless coupling mechanism [12] for an 
autonomous reconfiguration as shown in Fig. 1. 

Figure 1. Hybrid Wheel-track mobile robot [11] 
equipped with GHEFT [12], and visual landmarks for 

tracking 
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