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ABSTRACT 
This paper proposes a hybrid multibody dynamics 

formalism with a symbolical multibody toolbox developed in 

MATLAB Environment. The toolbox can generate the dynamic 

model of a multibody system with hybrid and nonholonomic 

dynamic properties. The framework and software structure of the 

toolbox are briefly demonstrated. The paper discusses the 

recursive kinematics and modular modeling theories that help 

improve the modeling performance and offer accessibility into 

the dynamic elements. The formalism that offers a symbolic 

solution to nonholonomic and constrained dynamics is explained 

in detail. The toolbox also provides design tools and auto-

compilation of hybrid automata. Two exemplary models and 

their simulations are presented to verify the feasibility of the 

formalism and demonstrate the performance of the toolbox. 

NOMENCLATURE 
EOM – Equation of Motion 

DOF – Degrees of Freedom 

COM – Center of Mass 

ODE – Ordinary Differential Equation 

R(Y)
(X)

 – Rotation Matrix (3 × 3) from Frame Y to X 

r(Y)
(X)

  – Displacement Vector (3 × 1) from Frame Y to X 

v(𝑋) – Translational Velocity (3 × 1) in Frame X 

a(X) – Translational Acceleration (3 × 1) in Frame X 

ω(X) – Angular Velocity (3 × 1) in Frame X 

α(X) – Angular Acceleration (3 × 1) in Frame X 

ẽ
(X)

 – Skew Matrix of the Vector e(X) 

f – System ODE (ODE of Flow) 

g – Guard and Reset Map (Jump) 

M – Inertial Matrix 

G – Generalized Force  

Λ – Virtual Power 

Γ – Constraint Vector 

q – Generalized Coordinates (Continuous States) 

p – Discrete States 

u – System Input 

σ – Nonholonomic Signal 

λ – Lagrangian Multiplier 

m – Mass (1 × 1) 

I(X) – Moment of Inertia (3 × 3) in Frame X 

F(X) – Force represented (3 × 1) in Frame X 

T(X) – Torque represented (3 × 1) in Frame X 

Φ – The World Coordinate Frame 

 

1. INTRODUCTION 
Standard process-orientated calculation of a system with 

multiple bodies with dynamic effects, constraints, and 

switched/hybrid dynamic properties often yields a laborious and 

complicated analysis problem. With the advancement of 

computer technology, multibody dynamic software toolboxes are 

developed to provide assistance to researchers in multibody 

dynamics with objective-oriented programming approaches.  

The multibody dynamic formalism determines the software 

structure of a modeling toolbox. While there are different 

formalisms developed by researchers over years, the principles 

of these multibody formalisms are based on a combination of the 

Lagrange’s equations, Newton-Euler principle and d’Alembert’s 

or Jourdain’s principles also denoted as Kane’s method [1]. Apart 

from formalisms, algorithms may vary based on different 

programming languages and design method.  

 

1.1. Background and Related Work 
The majority of the existing toolboxes adopt numerical 

formalisms. Over the past three decades, numerical algorithms 
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for physical/dynamic effects are designed and optimized to 

provide reliable simulation solution. Apart from the physics 

engines designed for multimedia entertainments [2], many 

scientific and research numerical multibody software toolboxes 

are developed for different modeling purposes such as ADAMS 

[3] for rigid mechanics and Simbody [4] for biomedical research 

modeling. 

While modeling based on numerical methods are efficient in 

visualization and real-time interactivities, analytical solution and 

symbolic expression of dynamic elements are more helpful in the 

detailed study of a multibody system. The development of 

symbolic calculation engine [5] has led to the emergence of 

symbolic modeling toolboxes, which includes the ones designed 

by researchers led by A. Kecskemethy [6]; E. Kreuzer [7]; T. 

Kurz [8]; and B. Bitterner [9] respectively. 

Switched and hybrid systems [10] have been a popular topic 

of study in many fields of research such as electronics, fluid 

dynamics, and robotics. The analysis of hybrid dynamics is 

crucial to the design and control of the system. However, the 

development of a hybrid dynamic modeling formalism has been 

a challenge due to the introduction of discrete properties. 

Therefore, not all of the formalisms support modeling of hybrid 

dynamics. In recent years, there have been several toolboxes 

designed with hybrid system features, such as Drake [11] and 

FROST [12].  

 

1.2. Motivation 
Most symbolic multibody toolboxes cannot support the 

modeling of nonholonomic properties, such as non-sliding 

rolling motion and floating joint. The expression of 

nonholonomic properties follows the form 𝜎̇ = 𝑓𝜎(𝑥). Here, 𝑥 

are the variables that describes the derivative of signal 𝜎, while 

the expression of 𝜎  cannot be acquired through integration, 

which has result in the difficulty of analytically describing the 

dynamics of a system.  

Some symbolic modeling formalisms try to circumvent the 

problem. However, the vector spaces of the circumvention and 

of the original properties may not be homomorphic, such as the 

‘Gimbal Lock’ problem experienced using Euler Angle for 

rotation parameters.  

As researchers in mechatronics and robotics, we often face 

tasks in dynamic related design optimization and controller 

design for novel designs, which requires symbolic modeling of 

nonholonomic, constrained and hybrid dynamics. While the 

previously introduced toolboxes are powerful, they do not offer 

solutions to all of the features. This motivated us to develop an 

efficient and capable symbolic toolbox which can provide 

solutions to these problems. 

In this paper, we present a multibody formalism which 

offers a solution to most of the problems that may occur in rigid 

multibody modeling as mentioned above. The formalism is 

presented in the form of an objective-oriented symbolical 

multibody research software named “ANDY”. The toolbox is 

developed based on the MATLAB environment, which the 

symbolic mathematics toolbox and other data structure classes. 

The features of the ANDY include: 

(1) Application of graph theory for kinematic chain hierarchy 

and hybrid dynamic topology to help the user with their 

modeling process. 

(2) Adoption of frame transformation based recursive kinematic 

algorithms to improve modeling performance. 

(3) Applying formality to system elements to support modular 

dynamic modeling, which provides insight into the dynamic 

properties of system elements. 

(4) Capability of modeling system with constrained and 

nonholonomic properties. 

(5) Compilation and generation of hybrid automata codes for 

simulation purposes which supports reset map and 

Zeno/multi-jump detection. 

(6) Providing tools for visualization and 3D animation of the 

multibody system.  

The development and theory behind the toolbox will be 

discussed in detail. Several experimental verifications will be 

carried out to verify the performance of the toolbox. 

 

2. FRAMEWORK AND ALGORITHM 
The software framework of ANDY is presented in Fig. 1. 

For ANDY, the System is the base object for the whole 

multibody dynamic model. Before the establishment of the 

kinematics or dynamics, the system variables need to be 

declared. There are three basic categories of variables: 

 

 

Figure 1. Software framework of ANDY 
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(1) Constants (Param): System internal parameters such as 

constant dimensions and inertial properties.  

(2) Time Independents Signal (Input, Disc): These variables 

that is independent of time or external to the system, which 

includes discrete state, input signals, noises, etc.  

(3) Time-Dependent Signal (NHSignal, Cont): Time-

dependent variables in the system which are nonholonomic 

and calculated through numerical methods. Time-dependent 

signals are defined with three properties – the differential 

order, initial condition, and ODE. 

Coordinate Frame and the transformation Link are 

established in Space graph network. While the derivation 

hierarchy of coordinate frames has the tree topological structure, 

basic graph theories can be used to retrieve the path of links 

between coordinate frames, which determines the relationship of 

transformations. 

Basic system elements include Body, Force, Torque, 

Damper and Potential Energy (Pot). Some libraries adopt the 

notion to describe relationships between bodies with joints, 

which are inherited on and derived from bodies. Unlike those 

libraries, according to ANDY’s framework, all the system 

elements are established based on the coordinate frames. This 

provides the accessibility to the dynamics of each element 

individually and means to generate dynamic equations in a 

modular way. The unconstrained system dynamics can then be 

generated with these elements. 

Constraints (Cons) are separated from the basic system 

elements since they will introduce loss of DOF to a system based 

on an open kinematic chain. Since the constraint effect in a 

model has also been modularized, the constrained EOM can be 

generated simply based on the unconstrained EOM and the 

selected constraints. 

The hybrid dynamic Model is another structure based on 

graph theory, which contains Flow as its nodes and Jumps as 

its edges. For each flow, there is a set of EOM of the system. 

Jump contains the guard and resets map between flows. 

Finally, visualization tool Axes provides Patch and Plot 

for 3D model animation and animated 3D trajectory printing.  

The formalism process of ANDY based on the previously 

discussed framework is depicted in Fig. 2, which describes the 

procedure it takes to model a system. The algorithms will be 

discussed in detail in the following sections. 

 

2.1. Recursive and Nonholonomic Kinematics 
The hierarchy of coordinate frames follows the principle of 

tree topology. In ANDY, the code design extended the existing 

graph toolbox utilities to construct the space of a system. Each 

space has a static root coordinate frame that sets the reference for 

the whole system space. Kinematic links describe the 

relationships between coordinate frames. 

The theory of recursive kinematics has been well developed, 

which can be applied for varies modeling problems [13][14]. 

Assume the links between coordinate frame 𝛹1 and coordinate 

frame Ψn  are presented as Ψ1 → Ψ2 → ⋯ → Ψi-2 → Ψi-1 →
Ψi → ⋯ → Ψn . For each link, the known information includes 

the relative displacements, velocities, and accelerations of the 

child frame in their parent frame: ri

(i-1)
,vi

(i-1)
,ai

(i-1)
,Ri

(i-1)
,ωi

(i-1)
,αi

(i-1)
. 

Assume the kinematic properties of  𝛹𝑖  presented in 𝛹ℎ+1 are 

acquired as ri

(h+1)
 , vi

(h+1)
 ,  ωi

(h+1)
 ,  ai

(h+1)
  and αi

(h+1)
 , the 

presentation of these properties in Ψh can be calculated as: 

(h) (h) (h 1) (h)

i (h 1) i (h 1)

(h) (h) (h 1) (h) (h) (h) (h 1)

i (h 1) i h 1 h 1 (h 1) i

(h) (h) (h 1) (h)

i (h 1) i h 1

(h) (h) (h+1) (h) (h) (h) (h) (h+1)

i (h+1) i h+1 h+1 h+1 h+1 i

(h

h+1

[ ( )]

          2

r R r r

v R v v R r

R

a R a a R r



  

 





 

 

   



 

 

  

 

   

) (h) (h+1) (h) (h) (h+1)

h+1 i h+1 (h+1) i

(h) (h) (h+1) (h) (h) (h+1) (h)

(h+1) i (h+1) (h+1) i h+1

( ) ( )R v R r

R R



    



  

    (1) 

The process in (1) outlines the symbolical recursive kinematics 

algorithm in ANDY. We can also acquire the Jacobian matrixes 

of the velocity properties of the coordinate frames with a similar 

procedure: 

i i h 1 h 1

(h) (h) (h 1) (h) (h) (h 1) (h)

v (h 1) v v (h 1) i( )J R J J R r J
 

 

              (2) 

i i h 1

(h) (h) (h 1) (h)

(h 1)J R J J




                       (3) 

 
 

Figure 2. The process of multibody formalism 
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The recursive algorithm has a higher efficiency compared 

with symbolical differentiation of a complicated symbolic  

expression since the velocities and accelerations of different 

frames can be acquired separated beforehand. Coordinate 

transformation can be nonholonomic. A nonholonomic 

kinematic link can be described as r(0) = r0 , R(0) = R0 , ṙ=v 

and Ṙ = ω̃R.  Here, 𝑟0 and 𝑅0 are the initial condition of the 

translational displacement and rotation matrix. The analytical 

solution of 𝑟 and 𝑅 are not available. In ANDY, the solution is 

offered by introducing nonholonomic signals. Whenever 

nonholonomic kinematic relationships are declared, the system 

will automatically define the corresponding nonholonomic 

signals that satisfy:  

r

R

r

R

r

R

v

R







 









                       (4) 

Nonholonomic signals will introduce new dynamics, which 

will be distinguished and treated separately. Compared to the 

joint based kinematics used in other symbolic toolboxes, which 

can only describe holonomic transformations, frame-based 

kinematics offered solutions to possible modeling problems. 

 

2.2. Modular Dynamic Modeling 
In our formalism, system elements are established on 

coordinate frames. The system objects are inherent to their 

kinematics, which leads to the convenient implementation of 

Kane’s Method [15]. The Equation of Motion of a multibody 

system can normally be presented in the form of  𝑀𝑞̈ = 𝐺 . 

Based on such presentation, the elements in a system with open 

kinematic chains are divided into two categories – Inertial 

Elements and Generalized Force Elements.  

Particles and bodies are categorized into inertial elements. 

Providing that a body 𝑃𝑘  has a mass of 𝑚𝑘  and an angular 

inertia of 𝐼𝑘. The COM of the body is located at the origin of 

frame 𝛹𝑘 . The inertial forces and torques are presented 

as 𝐹𝑘
(𝛷)

= −𝑚𝑘𝑎𝑘
(𝛷)

and  𝑇𝑘
(𝛷)

= −𝐼𝑘
(𝛷)

𝛼𝑘
(𝛷)

− 𝜔̃𝑘
(𝛷)

𝐼𝑘
(𝛷)

𝜔𝑘
(𝛷)

. 
According to Kane’s Method, we can calculate the virtual 

power generated by the inertial force is given as 

Λk=vk

(Φ)
T

Fk

(Φ)
+ωk

(Φ)
T

Tk

(Φ)
, which can also be expressed in term as 

Λk= q̇T(𝐽vk
T Fk

(Φ)
+𝐽ωk

T Tk

(Φ)
) . Here, Jvk

T   and Jωk

T   are the Jacobian 

Matrices that map 𝑞̇ to vk

(Φ)
 and ωk

(Φ)
, respectively. Therefore, 

the inertial matrix and generalized force introduced by the body 

to the system are calculated as: 

( )

vk k vk k k kKM J m J J I J  

                 (5) 

( ) ( ) ( ) ( )

k vk k vk k k k k k k( ) ( )G J m J q J I J q I      

          (6) 

The Coriolis and Centripetal forces of the inertial elements 

will be introduced to generalized force to the system. The virtual 

power of forces, torques, dampers, potential energies and other 

effects can all be converted into the following standard 

form Λ=υTKζ. We define υ as the directional vector (a 1st order 

time derivative vector), K as the parameter matrix and ζ as the 

magnitude vector. The assignment of the variable is flexible as 

long as the unit of υTK ζ is equivalent to Watt. 

Table. 1 presents some typical generalized force elements 

and how they fit into the standard form. Here, χ is the velocity 

constraint for damper and x  is the position constraint for the 

spring. Once the form is established, the generalized force can 

be calculated by: 

F vG J K                        (7) 

Jυ
T is the Jacobian Matrix that maps q̇ to υ. The generalized 

force of the elements in the same system will therefore possess 

the same dimension. 

Based on the previous conclusions (7)-(9), the EOM of an 

unconstrained system with m  inertial elements and n 

generalized force elements can be presented as: 

i j

m m n

i I F

i 1 i 1 j 1

( )M q G G
  

                    (8) 

If the modeling process is reasonable and M matrix has a full 

rank, indicating that there are no redundant generalized 

coordinates, the ODE of the system model can be generated by:  

1 1: ( , )q f q q M G M J   

                 (9) 

Through modular dynamic modeling, the complicated 

dynamic model can be segmented, which may facilitate the 

parallel computing of the modeling and simulation process. The 

dynamic properties of each element can be inspected 

individually for study purpose or modeling inspection. 

 

2.3. Constrained Dynamics 
Constraints will introduce new dynamic characteristics and 

complexity to the base system. The nonholonomic constraints 

have the standard form Γ̇ = 0. If the integral of a nonholonomic 

constraint can be obtained analytically, the constraint becomes 

holonomic Γ = 0 . There are various methods available to 

integrate constraints into an unconstrained system. The 

constraints that have an explicit analytical solution can be solved 

and substitute into the system directly. However, the loss of DOF 

will lead to the reduction of system states, making it inconsistent 

with the unconstrained base model. A commonly adopted 

Table 1. Generalized Force Elements Examples 

Type υ K ζ 

Force v I F 

Torque ω I T 
Linear Damper χ -b χ 

Quadratic Damper χ -b sign(χ)χ2 

Spring ẋ -k x 
Gravity v mI ag 
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method to apply constraint is through Lagrangian Multiplier. The 

EOM of the constrained system is given by 

Mq G J                    (10) 

The Lagrangian Multipliers 𝜆 are the constraint forces. The 

Jacobian Matrix 𝐽Γ  is the mapping from 𝑞̇  to the constraint 

vector Γ̇, which satisfies: 

;J q J q J q                      (11) 

Therefore, by substituting 𝑞̈ from (11) into (12) yields: 

1 1( )( )J M J J M G J q   

                (12) 

The effect of constraint force will lead to loss of DOF 

without affecting the consistency between models. The 

constraint forces can also monitor unilateral constraints [16]. 

However, numerical error accumulated during the numerical 

integration may result in the constraint drifting apart. Another 

possibility to apply the constraint to a system is through the “Soft 

Constraint” method. Soft constraints are applied to the system as 

generalized force elements such as springs and dampers. When 

the parameters are selected properly, the effect of these springs 

and dampers will be very similar to the rigid constraints. 

For a holonomic constraint, the virtual power of the 

generalized force elements added to the system as in (17). 

s dK K                      (13) 

In this case, 𝐾𝑠Γ  is similar to spring force and 𝐾𝑑Γ̇  is 

similar to damper force.  For a nonholonomic constraint, 𝐾𝑠 is 

equal to zero. The generalized force is then given by 

s d( )G J K K

                     (14) 

Compared with the Lagrangian Multiplier method, the 

calculation of the generalized force of soft constraints does not 

require inverse calculation of the inertia matrix, which to some 

extent simplified the modeling process. Soft constraints can also 

avoid the constrained dynamics from drifting due to error 

accumulation.  

Soft constraints can mimic the effect of rigid constraints, but 

they are not rigorous since they change the dynamics of the 

original system. Another disadvantage becomes prominent when 

parameters have very large norms, which leads to the increase in 

the natural frequency of the system since the sampling frequency 

of a simulation needs to be higher than the highest natural 

frequency of the system to provide a reliable result. In ANDY, 

the Lagrangian Multiplier is used as the main constraint method 

with the auxiliary soft constraints [17]: 

s d( )G J J K K 

                   (15) 

The combination of the two methods will prevent the 

constraints from drifting in a long run. The parameters of the soft 

constraint forces can be chosen relatively smaller which prevents 

the high system frequency. 

 

2.4. Hybrid Automata 
Previous sections explained the formulation of EOM of 

single system flows. The result can be used for controller design 

or exported to other applications. In addition to that, ANDY also 

supports the design and compilation of hybrid automata. 

Switched systems and hybrid systems consist of multiple 

continuous and discrete system states. The flows and the jumps 

are presented in the form below [18] [ q̇, σ̇, λ] = f
i
(t, p, q, u, σ, λ) 

and [j, p, q, σ] = g
i j

(t, p, q, u, σ, λ) . Here fi  is the continuous 

dynamics of flow  i ; g
i j

  is the jump from flow i  to flow j , 

which contains the guard and reset map. While flows can be 

compiled and generated automatically based on the algorithms 

discussed in the previous sections, the jumps still need to be 

manually designed. ANDY offers the assistive tool of hybrid 

system building with graph theory. The jump functions can be 

coded by modifying the generated templates. Once all settings 

are complete, ANDY will compile the hybrid automata into two 

state machines:  

[ , , , ] ( , , , , , , )Hj p q g i t p q u              (16) 

[ , , ] ( , , , , , , )Hq f j t p q u                (17) 

Here 𝑖 is the initialflow of the system; provides the ODE of 

the time dependent variablesin flow 𝑗; 𝑔𝐻 provides the jump 

between 𝑖 and 𝑗. The flow charts for g
H

 and f
H

 are presented in 

Fig. 3. A counter mechanism in g
H

 will detect multiple jumping 

scenarios. For cases such as zeno and infinite jump loop, the 

function will stop after the multiple jumping limits are reached 

and return the warning and the jumping trajectory data. 

 

 

 

 

 
 

Figure 3. Flow charts of f
H

 and g
H
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2.5. Other Toolbox Features 
ANDY can generate precompiled models with MATLAB 

code generator. The precompiled codes have high efficiency and 

can be used for real-time simulation and implementation.  

The precompiled code is compatible with all MATLAB 

ODE solvers for offline simulations. For real-time simulation, 

rk4Hybrid – a solver based on Runge-Kutta 4th is provided to 

allow input into the system. 

 

3. IMPLEMENTATION AND CASE STUDY 
The process of building a model with ANDY includes the 

following steps: 

(1) Define the time variable and system object, declare the time-

continuous states and any input variables, discrete states and 

nonholonomic signals to be used in the modeling. 

(2) Construct the space and coordinate frame hierarchy. Define 

holonomic or nonholonomic kinematic links between 

coordinate frames according to model setup. 

(3) Establish bodies and other system elements on coordinate 

frames. The inertia properties of the body will be defined at 

the origin of the base frame. The action points of forces and 

torques will be defined at the origin of the base frame, while 

the directions of the vectors can be defined in alternate 

reference frames. Dampers and potential energies do not 

require coordinate frames. 

(4) Declare holonomic or nonholonomic constraints and name 

the corresponding Lagrangian multipliers. 

(5) Initialize the model, build the hybrid system network. 

Define the constraints for different flows and write the jump 

function based on the template. 

(6) Compile and output. The symbolic dynamics can be 

obtained from the model for dynamics and control study. 

The precompiled output function can be used for simulation 

and implementation.  

Two cases are demonstrated to verify the performance of 

ANDY. The examples will showcase ANDY’s capability of 

solving nonholonomic, constrained and hybrid multibody 

dynamic modeling problems.  

 

3.1. The Swing Bar Case 
The first example features a simple 3D swing bar 

mechanisms as shown in Fig. 4. The ball joint between the two 

first two bars has introduced a nonholonomic kinematic link. A 

torque 𝑇 is exerted at the horizontal bar. The joint between the 

swing bars is a fix joint. 

 The system, therefore, has four degrees of freedoms. Four 

continuous states are declared, in which 𝑞ℎ represents the angle 

of the horizontal bar; 𝑞̇𝑥, 𝑞̇𝑦 , 𝑞̇𝑧  represent the angular velocities 

of the ball joint. The quaternion 𝑠𝑗 = [𝜎𝑤, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧] describes 

the rotation of the ball joint is automatically generated by the 

setup command of nonholonomic link [19].  

The kinematic hierarchy is presented in Fig. 5. Here, 

DH (d, θ, a, α)  stands for standard Denavit–Hartenberg 

transformation [20]. The three bars are established on the COM 

Frames. The system also involves dampers that dissipates the 

kinetic energy based on the global damping factor 𝑏. 

With the system parameter, initial conditions and simulation 

parameters chosen from Table. 2, the simulation outcome is 

shown in Fig. 6. A 3D trajectory in the world frame is plotted in 

the top subplot. The quaternion vector trajectory of the ball joint 

rotation is visualized in the second subplot, which indicates that 

the system enters stability after the instantaneous response has 

 

 
 

 
Figure 4. Swing bar mechanism 

 

 

Figure 5. Coordinate frame hierarchy of swing bar 
system 

Table 2. Parameters and Initial Conditions of Swing Bar 

 

Parameter Value Parameter Value 

L1 1m M1 1kg 

L2 1m M2 1kg 

L3 0.5 m M3 0.5kg 

g 9.81 m/s2 b 0.2 Ns/m 

T 2 N [q
H

, q̇
H

] [0, −5] 

[q
x
,q

y
, q

z
] [0, 0, 0] Sj [√2/2, 0, √2/2, 0] 
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been damped out. Further, the X and the Z coordinate trajectory 

of bar end points shown in the bottom two subplots corroborate 

with each other, indicating the steady state convergence of all 

three bars. 

The results show that the ANDY can solve nonholonomic 

problems effectively, which verifies the feasibility of the 

nonholonomic formalism. While the introduction of 

nonholonomic properties adds to the complexity of EOM 

(resulting in 9 ODEs in total), the rk4Hybrid solving 

frequency of precompiled ODE function for simulation can 

reach approximately 2.4𝑒4  HZ (single-threaded with Intel i7-

7700 CPU). 

 

3.2. The Passive Walker Case 
Passive walker with knees is a classic constrained hybrid 

multibody model. Since a passive walker’s stability is critically 

related to the design of the system, we referred to the modeling 

process of the knee bending passive walker presented in the 

paper by An and Chen [21]. The layout of the system is shown 

in Fig. 7.  

We selected the identical system parameter from the 

reference paper [21]. However, instead of following the hybrid 

modeling process that remaps properties between the two legs, 

we have used a float base model to prevent discontinuity in 

system states. Therefore, the system has six holonomic 

constraints which can be expressed by the following expressions: 

1 x i1 i2

2 y i1 i2

3 i2 i1

4 x o1 o2

y5 o1 o2

6 o2 o1

0.5(sin( ) sin( ))

0.5(cos( ) cos( ))

0.5(sin( ) sin( ))

0.5(cos( ) cos( ))

C q q q

C q q q

C q q

C q q q

qC q q

C q q

  

  

 

  

  

 

          (18) 

The hybrid system also has in total 6 different phases, each of the 

phases possesses a flow with certain constraints. The hybrid 

transition map is illustrated in Fig. 8. 

The discrete states used in the model include the knee 

locking angle 𝑝𝑘  and foot fixing position 𝑝𝑥 , which are used 

 
 

Figure 8. Hybrid transition map of passive walker 

 
 

Figure 6. Swing bar simulation result 

 

 

 
 

Figure 7. The layout of a passive walker with knee 
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for implementing the constraints. The angle 𝛼  is the knee 

bending angle introduced to allow the stance leg to bend after the 

swing leg’s knee is locked. The reset maps for fixing feet and 

locking knees includes impact map and state reset. The impact 

map [22] is realized with the mapping of continuous states: 

1 1(1 ( ) )q M J J M J J q     

                (19) 

While the hybrid automata for these systems are 

complicated. ANDY will auto-compile the flow functions based 

on your constraint settings at each phase. ANDY will also 

generate the jump function based on a prepared template, which 

allows you to fill in the reset maps in addition to the impact map. 

By giving the same initial condition used in the reference 

paper [21], we have achieved the identical system walking 

performance, which is presented in Fig. 9. Since any small 

change in a stable passive walker model may result in instability, 

the result shows that the model established by ANDY is identical 

to the one modeled in the reference paper.  

The angle and jumping trajectory of the system is presented 

in Fig. 10. While the trajectories look slightly different from the 

plot in the reference model (where there are discrete jumps) due 

to the model setup differences, the simulation data is identical. 

The frequency of jump function and flow ODE solving, 

based on the same setup as in the previous example, can be 

evaluated at the frequency of approximately 1.7𝑒4  HZ. A 

snapshot of the 3D animation visualization is presented in Fig. 

11. The animation of the 3D model that includes 10 bodies can 

maintain a framerate suitable for real-time simulation. 

 

4. CONCLUSION AND FUTURE WORK 
The new nonholonomic hybrid multibody dynamic 

formalism proposed in the paper has been explained and verified. 

The software ANDY based on the formalism has been proved 

successful in modeling a variety of multibody system with 

nonholonomic, constrained and hybrid features. The framework 

of ANDY also allows development of add-on features or 

specialized software tools.  

 
 

Figure 9. Walking trajectory of passive walker 

 
 

Figure 10. Angle and jump trajectories of passive 
walker 

 

 

 
 

Figure 11. 3D animation of passive walker  

 

Table 3. Comparison of symbolic modeling toolboxes 

Features ANDY 
FROST* 

[12] 

Neweul-M2 

[8] 

Nonholonomic 

Modeling 
Yes No No 

Hybrid 

Modeling 
Yes Yes No 

Constrained 

Dynamics 
Yes Yes Yes 

Visualization 

Utilities 
Yes Yes Yes 

Graphic UI No No Yes 

Analysis 

Utilities 
No Yes Yes 
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A small comparison against the available toolboxes for 

dynamic modeling can be seen in Table 3. As evident, ANDY 

supports nonholonomic equations and hybrid dynamics found in 

many dynamic models. While the basic algorithm for the 

multibody formalism is complete, ANDY is only in its early 

version. Future improvements will be made to improve 

calculation efficiency, analytical utilities, and user-friendliness. 

ANDY1  will serve as a quick dynamic modeling tool for 

future projects and researches, such as the control study and 

design optimization of mechatronic and robotic systems (legged 

robots, UAV/ROV, etc.). The toolbox will provide a balanced 

performance between symbolic modeling flexibility and 

computation efficiency. We hope the formalism and the toolbox 

can provide convenience to more people during their researches. 
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