

A MULTIBODY TOOLBOX FOR HYBRID DYNAMIC SYSTEM MODELING BASED
ON NONHOLONOMIC SYMBOLIC FORMALISM

Jiamin Wang
Robotics and Mechatronics Lab

Department of Mechanical
Engineering.
Virginia Tech

Blacksburg, VA, USA

Vinay R Kamidi
Robotics and Mechatronics Lab

Department of Mechanical
Engineering.
Virginia Tech

Blacksburg, VA, USA

Pinhas Ben-Tzvi
Robotics and Mechatronics Lab

Department of Mechanical
Engineering.
Virginia Tech

Blacksburg, VA, USA
bentzvi@vt.edu

ABSTRACT
This paper proposes a hybrid multibody dynamics

formalism with a symbolical multibody toolbox developed in

MATLAB Environment. The toolbox can generate the dynamic

model of a multibody system with hybrid and nonholonomic

dynamic properties. The framework and software structure of the

toolbox are briefly demonstrated. The paper discusses the

recursive kinematics and modular modeling theories that help

improve the modeling performance and offer accessibility into

the dynamic elements. The formalism that offers a symbolic

solution to nonholonomic and constrained dynamics is explained

in detail. The toolbox also provides design tools and auto-

compilation of hybrid automata. Two exemplary models and

their simulations are presented to verify the feasibility of the

formalism and demonstrate the performance of the toolbox.

NOMENCLATURE
EOM – Equation of Motion

DOF – Degrees of Freedom

COM – Center of Mass

ODE – Ordinary Differential Equation

R(Y)
(X)

 – Rotation Matrix (3 × 3) from Frame Y to X

r(Y)
(X)

 – Displacement Vector (3 × 1) from Frame Y to X

v(𝑋) – Translational Velocity (3 × 1) in Frame X

a(X) – Translational Acceleration (3 × 1) in Frame X

ω(X) – Angular Velocity (3 × 1) in Frame X

α(X) – Angular Acceleration (3 × 1) in Frame X

ẽ
(X)

 – Skew Matrix of the Vector e(X)

f – System ODE (ODE of Flow)

g – Guard and Reset Map (Jump)

M – Inertial Matrix

G – Generalized Force

Λ – Virtual Power

Γ – Constraint Vector

q – Generalized Coordinates (Continuous States)

p – Discrete States

u – System Input

σ – Nonholonomic Signal

λ – Lagrangian Multiplier

m – Mass (1 × 1)

I(X) – Moment of Inertia (3 × 3) in Frame X

F(X) – Force represented (3 × 1) in Frame X

T(X) – Torque represented (3 × 1) in Frame X

Φ – The World Coordinate Frame

1. INTRODUCTION
Standard process-orientated calculation of a system with

multiple bodies with dynamic effects, constraints, and

switched/hybrid dynamic properties often yields a laborious and

complicated analysis problem. With the advancement of

computer technology, multibody dynamic software toolboxes are

developed to provide assistance to researchers in multibody

dynamics with objective-oriented programming approaches.

The multibody dynamic formalism determines the software

structure of a modeling toolbox. While there are different

formalisms developed by researchers over years, the principles

of these multibody formalisms are based on a combination of the

Lagrange’s equations, Newton-Euler principle and d’Alembert’s

or Jourdain’s principles also denoted as Kane’s method [1]. Apart

from formalisms, algorithms may vary based on different

programming languages and design method.

1.1. Background and Related Work
The majority of the existing toolboxes adopt numerical

formalisms. Over the past three decades, numerical algorithms

Proceedings of the ASME 2018
Dynamic Systems and Control Conference

DSCC2018
September 30-October 3, 2018, Atlanta, Georgia, USA

DSCC2018-9000

1 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

mailto:bentzvi@vt.edu

for physical/dynamic effects are designed and optimized to

provide reliable simulation solution. Apart from the physics

engines designed for multimedia entertainments [2], many

scientific and research numerical multibody software toolboxes

are developed for different modeling purposes such as ADAMS

[3] for rigid mechanics and Simbody [4] for biomedical research

modeling.

While modeling based on numerical methods are efficient in

visualization and real-time interactivities, analytical solution and

symbolic expression of dynamic elements are more helpful in the

detailed study of a multibody system. The development of

symbolic calculation engine [5] has led to the emergence of

symbolic modeling toolboxes, which includes the ones designed

by researchers led by A. Kecskemethy [6]; E. Kreuzer [7]; T.

Kurz [8]; and B. Bitterner [9] respectively.

Switched and hybrid systems [10] have been a popular topic

of study in many fields of research such as electronics, fluid

dynamics, and robotics. The analysis of hybrid dynamics is

crucial to the design and control of the system. However, the

development of a hybrid dynamic modeling formalism has been

a challenge due to the introduction of discrete properties.

Therefore, not all of the formalisms support modeling of hybrid

dynamics. In recent years, there have been several toolboxes

designed with hybrid system features, such as Drake [11] and

FROST [12].

1.2. Motivation
Most symbolic multibody toolboxes cannot support the

modeling of nonholonomic properties, such as non-sliding

rolling motion and floating joint. The expression of

nonholonomic properties follows the form 𝜎̇ = 𝑓𝜎(𝑥). Here, 𝑥

are the variables that describes the derivative of signal 𝜎, while

the expression of 𝜎 cannot be acquired through integration,

which has result in the difficulty of analytically describing the

dynamics of a system.

Some symbolic modeling formalisms try to circumvent the

problem. However, the vector spaces of the circumvention and

of the original properties may not be homomorphic, such as the

‘Gimbal Lock’ problem experienced using Euler Angle for

rotation parameters.

As researchers in mechatronics and robotics, we often face

tasks in dynamic related design optimization and controller

design for novel designs, which requires symbolic modeling of

nonholonomic, constrained and hybrid dynamics. While the

previously introduced toolboxes are powerful, they do not offer

solutions to all of the features. This motivated us to develop an

efficient and capable symbolic toolbox which can provide

solutions to these problems.

In this paper, we present a multibody formalism which

offers a solution to most of the problems that may occur in rigid

multibody modeling as mentioned above. The formalism is

presented in the form of an objective-oriented symbolical

multibody research software named “ANDY”. The toolbox is

developed based on the MATLAB environment, which the

symbolic mathematics toolbox and other data structure classes.

The features of the ANDY include:

(1) Application of graph theory for kinematic chain hierarchy

and hybrid dynamic topology to help the user with their

modeling process.

(2) Adoption of frame transformation based recursive kinematic

algorithms to improve modeling performance.

(3) Applying formality to system elements to support modular

dynamic modeling, which provides insight into the dynamic

properties of system elements.

(4) Capability of modeling system with constrained and

nonholonomic properties.

(5) Compilation and generation of hybrid automata codes for

simulation purposes which supports reset map and

Zeno/multi-jump detection.

(6) Providing tools for visualization and 3D animation of the

multibody system.

The development and theory behind the toolbox will be

discussed in detail. Several experimental verifications will be

carried out to verify the performance of the toolbox.

2. FRAMEWORK AND ALGORITHM
The software framework of ANDY is presented in Fig. 1.

For ANDY, the System is the base object for the whole

multibody dynamic model. Before the establishment of the

kinematics or dynamics, the system variables need to be

declared. There are three basic categories of variables:

Figure 1. Software framework of ANDY

2 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

(1) Constants (Param): System internal parameters such as

constant dimensions and inertial properties.

(2) Time Independents Signal (Input, Disc): These variables

that is independent of time or external to the system, which

includes discrete state, input signals, noises, etc.

(3) Time-Dependent Signal (NHSignal, Cont): Time-

dependent variables in the system which are nonholonomic

and calculated through numerical methods. Time-dependent

signals are defined with three properties – the differential

order, initial condition, and ODE.

Coordinate Frame and the transformation Link are

established in Space graph network. While the derivation

hierarchy of coordinate frames has the tree topological structure,

basic graph theories can be used to retrieve the path of links

between coordinate frames, which determines the relationship of

transformations.

Basic system elements include Body, Force, Torque,

Damper and Potential Energy (Pot). Some libraries adopt the

notion to describe relationships between bodies with joints,

which are inherited on and derived from bodies. Unlike those

libraries, according to ANDY’s framework, all the system

elements are established based on the coordinate frames. This

provides the accessibility to the dynamics of each element

individually and means to generate dynamic equations in a

modular way. The unconstrained system dynamics can then be

generated with these elements.

Constraints (Cons) are separated from the basic system

elements since they will introduce loss of DOF to a system based

on an open kinematic chain. Since the constraint effect in a

model has also been modularized, the constrained EOM can be

generated simply based on the unconstrained EOM and the

selected constraints.

The hybrid dynamic Model is another structure based on

graph theory, which contains Flow as its nodes and Jumps as

its edges. For each flow, there is a set of EOM of the system.

Jump contains the guard and resets map between flows.

Finally, visualization tool Axes provides Patch and Plot

for 3D model animation and animated 3D trajectory printing.

The formalism process of ANDY based on the previously

discussed framework is depicted in Fig. 2, which describes the

procedure it takes to model a system. The algorithms will be

discussed in detail in the following sections.

2.1. Recursive and Nonholonomic Kinematics
The hierarchy of coordinate frames follows the principle of

tree topology. In ANDY, the code design extended the existing

graph toolbox utilities to construct the space of a system. Each

space has a static root coordinate frame that sets the reference for

the whole system space. Kinematic links describe the

relationships between coordinate frames.

The theory of recursive kinematics has been well developed,

which can be applied for varies modeling problems [13][14].

Assume the links between coordinate frame 𝛹1 and coordinate

frame Ψn are presented as Ψ1 → Ψ2 → ⋯ → Ψi-2 → Ψi-1 →
Ψi → ⋯ → Ψn . For each link, the known information includes

the relative displacements, velocities, and accelerations of the

child frame in their parent frame: ri

(i-1)
,vi

(i-1)
,ai

(i-1)
,Ri

(i-1)
,ωi

(i-1)
,αi

(i-1)
.

Assume the kinematic properties of 𝛹𝑖 presented in 𝛹ℎ+1 are

acquired as ri

(h+1)
 , vi

(h+1)
 , ωi

(h+1)
 , ai

(h+1)
 and αi

(h+1)
 , the

presentation of these properties in Ψh can be calculated as:

(h) (h) (h 1) (h)

i (h 1) i (h 1)

(h) (h) (h 1) (h) (h) (h) (h 1)

i (h 1) i h 1 h 1 (h 1) i

(h) (h) (h 1) (h)

i (h 1) i h 1

(h) (h) (h+1) (h) (h) (h) (h) (h+1)

i (h+1) i h+1 h+1 h+1 h+1 i

(h

h+1

[()]

 2

r R r r

v R v v R r

R

a R a a R r



  

 





 

 

   



 

 

  

 

   

) (h) (h+1) (h) (h) (h+1)

h+1 i h+1 (h+1) i

(h) (h) (h+1) (h) (h) (h+1) (h)

(h+1) i (h+1) (h+1) i h+1

() ()R v R r

R R



    



  

 (1)

The process in (1) outlines the symbolical recursive kinematics

algorithm in ANDY. We can also acquire the Jacobian matrixes

of the velocity properties of the coordinate frames with a similar

procedure:

i i h 1 h 1

(h) (h) (h 1) (h) (h) (h 1) (h)

v (h 1) v v (h 1) i()J R J J R r J
 

 

     (2)

i i h 1

(h) (h) (h 1) (h)

(h 1)J R J J




     (3)

Figure 2. The process of multibody formalism

3 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

The recursive algorithm has a higher efficiency compared

with symbolical differentiation of a complicated symbolic

expression since the velocities and accelerations of different

frames can be acquired separated beforehand. Coordinate

transformation can be nonholonomic. A nonholonomic

kinematic link can be described as r(0) = r0 , R(0) = R0 , ṙ=v

and Ṙ = ω̃R. Here, 𝑟0 and 𝑅0 are the initial condition of the

translational displacement and rotation matrix. The analytical

solution of 𝑟 and 𝑅 are not available. In ANDY, the solution is

offered by introducing nonholonomic signals. Whenever

nonholonomic kinematic relationships are declared, the system

will automatically define the corresponding nonholonomic

signals that satisfy:

r

R

r

R

r

R

v

R







 









 (4)

Nonholonomic signals will introduce new dynamics, which

will be distinguished and treated separately. Compared to the

joint based kinematics used in other symbolic toolboxes, which

can only describe holonomic transformations, frame-based

kinematics offered solutions to possible modeling problems.

2.2. Modular Dynamic Modeling
In our formalism, system elements are established on

coordinate frames. The system objects are inherent to their

kinematics, which leads to the convenient implementation of

Kane’s Method [15]. The Equation of Motion of a multibody

system can normally be presented in the form of 𝑀𝑞̈ = 𝐺 .

Based on such presentation, the elements in a system with open

kinematic chains are divided into two categories – Inertial

Elements and Generalized Force Elements.

Particles and bodies are categorized into inertial elements.

Providing that a body 𝑃𝑘 has a mass of 𝑚𝑘 and an angular

inertia of 𝐼𝑘. The COM of the body is located at the origin of

frame 𝛹𝑘 . The inertial forces and torques are presented

as 𝐹𝑘
(𝛷)

= −𝑚𝑘𝑎𝑘
(𝛷)

and 𝑇𝑘
(𝛷)

= −𝐼𝑘
(𝛷)

𝛼𝑘
(𝛷)

− 𝜔̃𝑘
(𝛷)

𝐼𝑘
(𝛷)

𝜔𝑘
(𝛷)

.
According to Kane’s Method, we can calculate the virtual

power generated by the inertial force is given as

Λk=vk

(Φ)
T

Fk

(Φ)
+ωk

(Φ)
T

Tk

(Φ)
, which can also be expressed in term as

Λk= q̇T(𝐽vk
T Fk

(Φ)
+𝐽ωk

T Tk

(Φ)
) . Here, Jvk

T and Jωk

T are the Jacobian

Matrices that map 𝑞̇ to vk

(Φ)
 and ωk

(Φ)
, respectively. Therefore,

the inertial matrix and generalized force introduced by the body

to the system are calculated as:

()

vk k vk k k kKM J m J J I J  

   (5)

() () () ()

k vk k vk k k k k k k() ()G J m J q J I J q I      

      (6)

The Coriolis and Centripetal forces of the inertial elements

will be introduced to generalized force to the system. The virtual

power of forces, torques, dampers, potential energies and other

effects can all be converted into the following standard

form Λ=υTKζ. We define υ as the directional vector (a 1st order

time derivative vector), K as the parameter matrix and ζ as the

magnitude vector. The assignment of the variable is flexible as

long as the unit of υTK ζ is equivalent to Watt.

Table. 1 presents some typical generalized force elements

and how they fit into the standard form. Here, χ is the velocity

constraint for damper and x is the position constraint for the

spring. Once the form is established, the generalized force can

be calculated by:

F vG J K (7)

Jυ
T is the Jacobian Matrix that maps q̇ to υ. The generalized

force of the elements in the same system will therefore possess

the same dimension.

Based on the previous conclusions (7)-(9), the EOM of an

unconstrained system with m inertial elements and n

generalized force elements can be presented as:

i j

m m n

i I F

i 1 i 1 j 1

()M q G G
  

    (8)

If the modeling process is reasonable and M matrix has a full

rank, indicating that there are no redundant generalized

coordinates, the ODE of the system model can be generated by:

1 1: (,)q f q q M G M J   

   (9)

Through modular dynamic modeling, the complicated

dynamic model can be segmented, which may facilitate the

parallel computing of the modeling and simulation process. The

dynamic properties of each element can be inspected

individually for study purpose or modeling inspection.

2.3. Constrained Dynamics
Constraints will introduce new dynamic characteristics and

complexity to the base system. The nonholonomic constraints

have the standard form Γ̇ = 0. If the integral of a nonholonomic

constraint can be obtained analytically, the constraint becomes

holonomic Γ = 0 . There are various methods available to

integrate constraints into an unconstrained system. The

constraints that have an explicit analytical solution can be solved

and substitute into the system directly. However, the loss of DOF

will lead to the reduction of system states, making it inconsistent

with the unconstrained base model. A commonly adopted

Table 1. Generalized Force Elements Examples

Type υ K ζ

Force v I F

Torque ω I T
Linear Damper χ -b χ

Quadratic Damper χ -b sign(χ)χ2

Spring ẋ -k x
Gravity v mI ag

4 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

method to apply constraint is through Lagrangian Multiplier. The

EOM of the constrained system is given by

Mq G J   (10)

The Lagrangian Multipliers 𝜆 are the constraint forces. The

Jacobian Matrix 𝐽Γ is the mapping from 𝑞̇ to the constraint

vector Γ̇, which satisfies:

;J q J q J q       (11)

Therefore, by substituting 𝑞̈ from (11) into (12) yields:

1 1()()J M J J M G J q   

      (12)

The effect of constraint force will lead to loss of DOF

without affecting the consistency between models. The

constraint forces can also monitor unilateral constraints [16].

However, numerical error accumulated during the numerical

integration may result in the constraint drifting apart. Another

possibility to apply the constraint to a system is through the “Soft

Constraint” method. Soft constraints are applied to the system as

generalized force elements such as springs and dampers. When

the parameters are selected properly, the effect of these springs

and dampers will be very similar to the rigid constraints.

For a holonomic constraint, the virtual power of the

generalized force elements added to the system as in (17).

s dK K      (13)

In this case, 𝐾𝑠Γ is similar to spring force and 𝐾𝑑Γ̇ is

similar to damper force. For a nonholonomic constraint, 𝐾𝑠 is

equal to zero. The generalized force is then given by

s d()G J K K

     (14)

Compared with the Lagrangian Multiplier method, the

calculation of the generalized force of soft constraints does not

require inverse calculation of the inertia matrix, which to some

extent simplified the modeling process. Soft constraints can also

avoid the constrained dynamics from drifting due to error

accumulation.

Soft constraints can mimic the effect of rigid constraints, but

they are not rigorous since they change the dynamics of the

original system. Another disadvantage becomes prominent when

parameters have very large norms, which leads to the increase in

the natural frequency of the system since the sampling frequency

of a simulation needs to be higher than the highest natural

frequency of the system to provide a reliable result. In ANDY,

the Lagrangian Multiplier is used as the main constraint method

with the auxiliary soft constraints [17]:

s d()G J J K K 

      (15)

The combination of the two methods will prevent the

constraints from drifting in a long run. The parameters of the soft

constraint forces can be chosen relatively smaller which prevents

the high system frequency.

2.4. Hybrid Automata
Previous sections explained the formulation of EOM of

single system flows. The result can be used for controller design

or exported to other applications. In addition to that, ANDY also

supports the design and compilation of hybrid automata.

Switched systems and hybrid systems consist of multiple

continuous and discrete system states. The flows and the jumps

are presented in the form below [18] [q̇, σ̇, λ] = f
i
(t, p, q, u, σ, λ)

and [j, p, q, σ] = g
i j

(t, p, q, u, σ, λ) . Here fi is the continuous

dynamics of flow i ; g
i j

 is the jump from flow i to flow j ,

which contains the guard and reset map. While flows can be

compiled and generated automatically based on the algorithms

discussed in the previous sections, the jumps still need to be

manually designed. ANDY offers the assistive tool of hybrid

system building with graph theory. The jump functions can be

coded by modifying the generated templates. Once all settings

are complete, ANDY will compile the hybrid automata into two

state machines:

[, , ,] (, , , , , ,)Hj p q g i t p q u   (16)

[, ,] (, , , , , ,)Hq f j t p q u    (17)

Here 𝑖 is the initialflow of the system; provides the ODE of

the time dependent variablesin flow 𝑗; 𝑔𝐻 provides the jump

between 𝑖 and 𝑗. The flow charts for g
H

 and f
H

 are presented in

Fig. 3. A counter mechanism in g
H

 will detect multiple jumping

scenarios. For cases such as zeno and infinite jump loop, the

function will stop after the multiple jumping limits are reached

and return the warning and the jumping trajectory data.

Figure 3. Flow charts of f
H

 and g
H

5 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

2.5. Other Toolbox Features
ANDY can generate precompiled models with MATLAB

code generator. The precompiled codes have high efficiency and

can be used for real-time simulation and implementation.

The precompiled code is compatible with all MATLAB

ODE solvers for offline simulations. For real-time simulation,

rk4Hybrid – a solver based on Runge-Kutta 4th is provided to

allow input into the system.

3. IMPLEMENTATION AND CASE STUDY
The process of building a model with ANDY includes the

following steps:

(1) Define the time variable and system object, declare the time-

continuous states and any input variables, discrete states and

nonholonomic signals to be used in the modeling.

(2) Construct the space and coordinate frame hierarchy. Define

holonomic or nonholonomic kinematic links between

coordinate frames according to model setup.

(3) Establish bodies and other system elements on coordinate

frames. The inertia properties of the body will be defined at

the origin of the base frame. The action points of forces and

torques will be defined at the origin of the base frame, while

the directions of the vectors can be defined in alternate

reference frames. Dampers and potential energies do not

require coordinate frames.

(4) Declare holonomic or nonholonomic constraints and name

the corresponding Lagrangian multipliers.

(5) Initialize the model, build the hybrid system network.

Define the constraints for different flows and write the jump

function based on the template.

(6) Compile and output. The symbolic dynamics can be

obtained from the model for dynamics and control study.

The precompiled output function can be used for simulation

and implementation.

Two cases are demonstrated to verify the performance of

ANDY. The examples will showcase ANDY’s capability of

solving nonholonomic, constrained and hybrid multibody

dynamic modeling problems.

3.1. The Swing Bar Case
The first example features a simple 3D swing bar

mechanisms as shown in Fig. 4. The ball joint between the two

first two bars has introduced a nonholonomic kinematic link. A

torque 𝑇 is exerted at the horizontal bar. The joint between the

swing bars is a fix joint.

 The system, therefore, has four degrees of freedoms. Four

continuous states are declared, in which 𝑞ℎ represents the angle

of the horizontal bar; 𝑞̇𝑥, 𝑞̇𝑦 , 𝑞̇𝑧 represent the angular velocities

of the ball joint. The quaternion 𝑠𝑗 = [𝜎𝑤, 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧] describes

the rotation of the ball joint is automatically generated by the

setup command of nonholonomic link [19].

The kinematic hierarchy is presented in Fig. 5. Here,

DH (d, θ, a, α) stands for standard Denavit–Hartenberg

transformation [20]. The three bars are established on the COM

Frames. The system also involves dampers that dissipates the

kinetic energy based on the global damping factor 𝑏.

With the system parameter, initial conditions and simulation

parameters chosen from Table. 2, the simulation outcome is

shown in Fig. 6. A 3D trajectory in the world frame is plotted in

the top subplot. The quaternion vector trajectory of the ball joint

rotation is visualized in the second subplot, which indicates that

the system enters stability after the instantaneous response has

Figure 4. Swing bar mechanism

Figure 5. Coordinate frame hierarchy of swing bar
system

Table 2. Parameters and Initial Conditions of Swing Bar

Parameter Value Parameter Value

L1 1m M1 1kg

L2 1m M2 1kg

L3 0.5 m M3 0.5kg

g 9.81 m/s2 b 0.2 Ns/m

T 2 N [q
H

, q̇
H

] [0, −5]

[q
x
,q

y
, q

z
] [0, 0, 0] Sj [√2/2, 0, √2/2, 0]

6 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

been damped out. Further, the X and the Z coordinate trajectory

of bar end points shown in the bottom two subplots corroborate

with each other, indicating the steady state convergence of all

three bars.

The results show that the ANDY can solve nonholonomic

problems effectively, which verifies the feasibility of the

nonholonomic formalism. While the introduction of

nonholonomic properties adds to the complexity of EOM

(resulting in 9 ODEs in total), the rk4Hybrid solving

frequency of precompiled ODE function for simulation can

reach approximately 2.4𝑒4 HZ (single-threaded with Intel i7-

7700 CPU).

3.2. The Passive Walker Case
Passive walker with knees is a classic constrained hybrid

multibody model. Since a passive walker’s stability is critically

related to the design of the system, we referred to the modeling

process of the knee bending passive walker presented in the

paper by An and Chen [21]. The layout of the system is shown

in Fig. 7.

We selected the identical system parameter from the

reference paper [21]. However, instead of following the hybrid

modeling process that remaps properties between the two legs,

we have used a float base model to prevent discontinuity in

system states. Therefore, the system has six holonomic

constraints which can be expressed by the following expressions:

1 x i1 i2

2 y i1 i2

3 i2 i1

4 x o1 o2

y5 o1 o2

6 o2 o1

0.5(sin() sin())

0.5(cos() cos())

0.5(sin() sin())

0.5(cos() cos())

C q q q

C q q q

C q q

C q q q

qC q q

C q q

  

  

 

  

  

 

 (18)

The hybrid system also has in total 6 different phases, each of the

phases possesses a flow with certain constraints. The hybrid

transition map is illustrated in Fig. 8.

The discrete states used in the model include the knee

locking angle 𝑝𝑘 and foot fixing position 𝑝𝑥 , which are used

Figure 8. Hybrid transition map of passive walker

Figure 6. Swing bar simulation result

Figure 7. The layout of a passive walker with knee

7 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

for implementing the constraints. The angle 𝛼 is the knee

bending angle introduced to allow the stance leg to bend after the

swing leg’s knee is locked. The reset maps for fixing feet and

locking knees includes impact map and state reset. The impact

map [22] is realized with the mapping of continuous states:

1 1(1 ())q M J J M J J q     

     (19)

While the hybrid automata for these systems are

complicated. ANDY will auto-compile the flow functions based

on your constraint settings at each phase. ANDY will also

generate the jump function based on a prepared template, which

allows you to fill in the reset maps in addition to the impact map.

By giving the same initial condition used in the reference

paper [21], we have achieved the identical system walking

performance, which is presented in Fig. 9. Since any small

change in a stable passive walker model may result in instability,

the result shows that the model established by ANDY is identical

to the one modeled in the reference paper.

The angle and jumping trajectory of the system is presented

in Fig. 10. While the trajectories look slightly different from the

plot in the reference model (where there are discrete jumps) due

to the model setup differences, the simulation data is identical.

The frequency of jump function and flow ODE solving,

based on the same setup as in the previous example, can be

evaluated at the frequency of approximately 1.7𝑒4 HZ. A

snapshot of the 3D animation visualization is presented in Fig.

11. The animation of the 3D model that includes 10 bodies can

maintain a framerate suitable for real-time simulation.

4. CONCLUSION AND FUTURE WORK
The new nonholonomic hybrid multibody dynamic

formalism proposed in the paper has been explained and verified.

The software ANDY based on the formalism has been proved

successful in modeling a variety of multibody system with

nonholonomic, constrained and hybrid features. The framework

of ANDY also allows development of add-on features or

specialized software tools.

Figure 9. Walking trajectory of passive walker

Figure 10. Angle and jump trajectories of passive
walker

Figure 11. 3D animation of passive walker

Table 3. Comparison of symbolic modeling toolboxes

Features ANDY
FROST*

[12]

Neweul-M2

[8]

Nonholonomic

Modeling
Yes No No

Hybrid

Modeling
Yes Yes No

Constrained

Dynamics
Yes Yes Yes

Visualization

Utilities
Yes Yes Yes

Graphic UI No No Yes

Analysis

Utilities
No Yes Yes

8 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

A small comparison against the available toolboxes for

dynamic modeling can be seen in Table 3. As evident, ANDY

supports nonholonomic equations and hybrid dynamics found in

many dynamic models. While the basic algorithm for the

multibody formalism is complete, ANDY is only in its early

version. Future improvements will be made to improve

calculation efficiency, analytical utilities, and user-friendliness.

ANDY1 will serve as a quick dynamic modeling tool for

future projects and researches, such as the control study and

design optimization of mechatronic and robotic systems (legged

robots, UAV/ROV, etc.). The toolbox will provide a balanced

performance between symbolic modeling flexibility and

computation efficiency. We hope the formalism and the toolbox

can provide convenience to more people during their researches.

ACKNOWLEDGMENTS
The authors would like to acknowledge the effort of Mr.

Yujiong Liu for his support during research.

REFERENCES
[1] Kane, Thomas R., and David A. Levinson. “Dynamics,

theory and applications.” McGraw Hill, (1985).

[2] Dalmau, Daniel Sanchez-Crespo. “Core techniques and

algorithms in game programming.” New Riders, 2004.

[3] A. Arbor. ADAMS/Solver Primer (2004).

[4] Sherman, Michael A., Ajay Seth, and Scott L. Delp.

"Simbody: multibody dynamics for biomedical

research." Procedia Iutam2 (2011): 241-261.

[5] Meurer, Aaron, et al. "SymPy: symbolic computing in

Python." PeerJ Computer Science 3 (2017): e103.

[6] Kecskeméthy, Andrés, and Manfred Hiller. "An object-

oriented approach for an effective formulation of multibody

dynamics." Computer Methods in Applied Mechanics and

Engineering 115.3-4 (1994): 287-314.

[7] Kreuzer, E., and W. Schiehlen. "NEWEUL—Software for

the generation of symbolical equations of motion."

Multibody systems handbook. Springer, Berlin, Heidelberg,

(1990). 181-202.

[8] Kurz T, Eberhard P, Henninger C, et al. From Neweul to

Neweul-M 2: symbolical equations of motion for multibody

system analysis and synthesis[J]. Multibody System

Dynamics, 2010, 24(1): 25-41.

[9] Bittner, Brian, and Koushil Sreenath. "Symbolic

computation of dynamics on smooth manifolds." Workshop

on Algorithmic Foundations of Robotics. 2016.

[10] Van Der Schaft, Arjan J., and Johannes Maria Schumacher.

“An introduction to hybrid dynamical systems.” Vol. 251.

London: Springer, 2000.

[11] R. Tedrake, “Drake: A planning, control, and analysis

toolbox for nonlinear dynamical systems.”

http://drake.mit.edu, 2016.

1 ANDY is desired to be open source and is available at:

https://github.com/RM-Lab/ANDY. It comes packaged with examples

highlighted in this manuscript.

[12] Hereid, Ayonga, and Aaron D. Ames. "FROST*: Fast Robot

Optimization and Simulation Toolkit." (2017): 719-726.

[13] Sayers, Michael W. "Symbolic vector/dyadic multibody

formalism for tree-topology systems." Journal of Guidance,

Control, and Dynamics 14.6 (1991): 1240-1250.

[14] Rone, William S., and Pinhas Ben-Tzvi. "Continuum robot

dynamics utilizing the principle of virtual power." IEEE

Transactions on Robotics 30.1 (2014): 275-287.

[15] Kane, Thomas R., and David A. Levinson. Dynamics,

theory and applications. McGraw Hill, 1985.

[16] Remy, C. David. “Optimal exploitation of natural dynamics

in legged locomotion.” Diss. ETH Zurich, 2011.

[17] Witkin, Andrew. "An introduction to physically based

modeling: Constrained dynamics." Robotics Institute

(1997).

[18] Sanfelice, Ricardo, David Copp, and Pablo Nanez. "A

toolbox for simulation of hybrid systems in

Matlab/Simulink: Hybrid Equations (HyEQ) Toolbox."

Proceedings of the 16th international conference on Hybrid

systems: computation and control. ACM, 2013.

[19] Diebel, James. "Representing attitude: Euler angles, unit

quaternions, and rotation vectors." Matrix 58.15-16 (2006):

1-35.

[20] Craig, John J. Introduction to robotics: mechanics and

control. Vol. 3. Upper Saddle River, NJ, USA::

Pearson/Prentice Hall, 2005.

[21] An, Kang, and Qijun Chen. "A passive dynamic walking

model based on knee-bend behaviour: stability and

adaptability for walking down steep slopes." International

Journal of Advanced Robotic Systems 10.10 (2013): 365.

[22] Hurmuzlu, Yildirim, and Dan B. Marghitu. "Rigid body

collisions of planar kinematic chains with multiple contact

points." The international journal of robotics research 13.1

(1994): 82-92.

9 Copyright © 2018 ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 12/13/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://drake.mit.edu/
https://github.com/RM-Lab/ANDY

