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ABSTRACT 
Inspired by nature, continuum robots show their potential 

in human-centered environments due to the compliant-to-
obstacle features and dexterous mobility. However, there are 
few such robots successfully implemented outside the 
laboratory so far. One reason is believed to be due to the real 
time control challenge for soft robots, which require a highly 
efficient, highly accurate dynamic model. This paper presents a 
new systematic methodology to formulate the dynamics of 
constant curvature continuum robots. The new approach builds 
on several new techniques: 1) using the virtual work principle 
to formulate the equation of motion, 2) using specifically 
selected kinematic representations to separate integral variables 
from the non-integral variables, and 3) using vector 
representations to put the integral in a compact form. By doing 
so, the hard-to-solve integrals are evaluated analytically in 
advance and the accurate inverse dynamics are established 
accordingly. Numerical simulations are conducted to evaluate 
the performances of the newly proposed model. 

NOMENCLATURE 
δܠ Virtual displacement of ܠ 
 ௜, ૑௜ Linear and angular velocityܞ
۷௜ Moment of inertia 
۸௜  Jacobian matrix 
૑ෝ  Skew symmetric matrix of vector ૑ 
ૌ௜  Generalized force 
ܴ  Cross section radius 
 ௜  Mass of the ݅th segmentܯ
 ௜  Bending angle of the ݅th segment in curvatureߠ

plane 
߮௜  Rotation of the ݅th segment curvature plane 
 ௜  Curvature radius of the ݅th segmentݎ
 ௜  ݅th segment curvatureߢ
s௫, c௫ Convenient representations for sinߠ௜ݔ  and 

cosߠ௜ݔ respectively 
 Integral variable ranging from 0 to 1  ݔ
 Elastic module  ܧ

 Bending stiffness  ܭ
 ௜,଴  Unloaded length of the ݅th segmentܮ
۶  System inertia matrix 

1 INTRODUCTION 
In last two decades, continuum robots drew increased 

interest from the robotics research community since these soft 
structures provide promising solutions for human-centered 
robotic applications due to their compliant-to-obstacle features 
and their dexterous mobility. A considerable amount of research 
was carried out since then. Practical implementations include 
the typical continuum elephant’s trunk manipulator [1], the 
concentric tube continuum robot [2], the continuum robotic 
tails [3-5], etc. Theoretical research involves kinematic 
modeling [6], dynamic modeling [7], trajectory planning, and 
control [8]. More comprehensive reviews could be found in [9] 
and [10]. 

However, limited by the lack of highly efficient and 
accurate dynamic algorithm, real time control of most current 
continuum robots is still a challenge. Significant effort has been 
made to solve this problem which can be roughly categorized 
into two classes: the distributed parameter model and the 
lumped parameter model. Distributed parameter models [2, 7, 
11, 12] are thought to have high accuracy due to their 

Figure 1: Illustration of a two-segment constant 
curvature continuum robot with three intrinsic 

actuators in each segment

Proceedings of the ASME 2019 
Dynamic Systems and Control Conference 

DSCC2019 
October 8-11, 2019, Park City, Utah, USA 

DSCC2019-8999

1 Copyright © 2019 ASME



 
 

considerations of the robots’ unconstructed shapes. However, 
this approach usually generates large partial differential 
equations (PDE) and can be only solved offline. Lumped 
parameter models [13-16] improve the computational efficiency 
by assuming the material deformation rule in advance. This 
approach usually generates online solvable ordinary differential 
equations (ODE) but loses some accuracy. Therefore, to 
balance the accuracy and efficiency, choosing appropriate 
lumped parameter assumptions and formulating the 
corresponding dynamic model become a focus of this research. 

For lumped parameter models, constant curvature is the 
most widely used deformation assumption (a two-segment 
example is illustrated in Fig. 1). Although effective, one 
significant drawback of this assumption is that it does not 
account for the curvature variance induced by gravity. To 
compensate for this drawback, Rone and Ben-Tzvi [13] divided 
the robot into multiple sub-segments. However, this approach 
did not account for the inertia loading of the continuum 
backbone, which turns out a hard-to-solve integral problem 
faced by most lumped parameter models. To solve this 
problem, Taylor serials approximation [14] and energy 
approximation [17] were used to evaluate the dynamics 
numerically. 

By observing the integral challenge, the difficulty is 
believed to be due to the mixture of the integral variable and 
other non-integral kinematic terms. Therefore, if a 
mathematical representation can be found such that the integral 
variable can be isolated from the non-integral variables, then 
the integral might be evaluated analytically and the dynamics 
could be simplified significantly. 

Following this idea, this paper aims to develop a new 
approach to solve the integral problem that appears in modeling 
constant curvature continuum robot dynamics. The core idea is 
to separate the integral variable from the non-integral variables 
in the kinematic modeling stage, which requires looking for 
good kinematic representations for the linear and angular terms. 
Fortunately, for linear kinematic terms, a simple vector 
representation is found and the vector representation turns out 
to be useful and simplifies the derivation significantly. By 
doing so, the integral variable is separated from the non-
integral variables, which allows the integral to be evaluated 
analytically. 

Note that the work in this paper has similar idea as in [16], 
which utilized Frenet frame representation to separate variables 
and evaluates the integral analytically. However, [16] focuses 
on a planar case and is based on Lagrange’s method, which 
requires further differentiation of the terms ߲ݍ߲/ܮሶ௜. Instead, 
this paper utilizes the vectors directly associated with the 
integral variable to separate the integral variables and applies 
the virtual work principle to “avoid” this second stage 
differentiation (theoretically, the second differentiation cannot 

be avoided). But in virtual work based formulations [18, 19], 
the second differentiation appears explicitly as physically 
meaningful accelerations which make the method suitable for 
numerical computations. 

In summary, this paper focuses on solving the integral 
challenge encountered in modeling constant curvature 
continuum robot dynamics. The major contributions are as 
follows: (1) the analytic integral of the continuum rod inertia 
forces was successfully evaluated by using separation of 
variables method (more specifically, writing kinematic terms as 
linear functions of the integral variable). Thus, there is no need 
for any functional approximation techniques (modal approach, 
Taylor expansion etc.); (2) an analytic dynamic model for 
constant curvature continuum robot is established by the virtual 
work principle, which is different from existing Lagrangian 
based or numerical approximation based approaches; (3) since 
the new method keeps the physical meaning of the kinematic 
terms, a recursive algorithm is proposed to compute the 
dynamic model.  

The rest of this paper is organized as follows. Section 2 
formulates the dynamic framework based on the virtual work 
principle. Section 3 evaluates the loading integrals using the 
separation of variables method and substantiates each term in 
the dynamic framework. Section 4 presents the corresponding 
numerical algorithm to compute the dynamics derived in 
sections 2 and 3. Section 5 conducts a preliminary numerical 
experiment to verify the dynamic model.  

2 ESTABLISHING THE EQUATION OF MOTION 
USING VIRTUAL WORK PRINCIPLE 

The virtual work principle provides another effective way 
to establish the equations of motion based on the d’Alembert 
principle, besides the classic Newton-Euler and Lagrangian 
based formulations. For a ܰ rigid body system, the virtual 
work principle states that the total virtual work of the system 
should be always zero, for which the mathematical expression 
is given in Eq. (1). ۴௜  and ۻ௜  are the active forces and 
moments on body ݅, respectively, and ۷௜ is the inertia matrix 
of body ݅ ௜ܞ . , ૑௜  are the linear and angular velocity, 
respectively. 

෍ሾδܠ௜
்ሺ۴௜ െ ሶ௜ሻܞ݉ ൅ δી௜

்ሺۻ௜ െ ۷௜૑ሶ ௜ െ ૑ෝ௜۷௜૑௜ሻሿ ൌ 0

ே

௜ୀଵ

 (1) 

By expressing the virtual displacements δܠ௜ and δી௜ by 
the generalized coordinates ܙ  (δܠ௜ ൌ ۸௜,௩δܙ, δી௜ ൌ ۸௜,ఠδܙ), 
Eq. (1) can be written as follows 

෍ሺ۸௜,௩
் ۴௜ ൅ ۸௜,ఠ

் ௜ሻۻ

ே

௜ୀଵ

ൌ෍ൣ۸௜,௩
் ሶ௜ܞ݉ ൅ ۸௜,ఠ

் ሺ۷௜૑ሶ ௜ ൅ ૑ෝ௜۷௜૑௜ሻ൧

ே

௜ୀଵ

(2)

2 Copyright © 2019 ASME



 
 

where ۸௜,௩, ۸௜,ఠ are the Jacobian matrices. Eq. (2) expresses 
the basic physical intuition of a mechanical system that the left 
side forces generate the right side motions. However, these 
forces and motions are equated in the generalized space where 
the physically meaningful quantities (velocities, accelerations, 
and forces) need be mapped by the corresponding Jacobians (a 
map between the workspace and the generalized space). 

Based on Eq. (2), the equation of motion for the continuum 
robot with ܰ segments can be formulated as follows 

෍۸௜,௔௖௧
் ૌ௜,௔௖௧

୒

௜ୀଵ

ൌ෍൫ૌ௜,௜௡௥ ൅ ૌ௜,௘௟௦ ൅ ૌ௜,௚௩௧ ൅ ૌ௜,ௗ௠௣൯

୒

௜ୀଵ

 (3) 

where ૌ௜,௔௖௧ is the actuation force for the ݅th segment and 
۸௜,௔௖௧  is the corresponding Jacobian matrix. ૌ௜,௜௡௥ , ૌ௜,௘௟௦ , 
ૌ௜,௚௩௧ , and ૌ௜,ௗ௠௣  are the inertia loading, elastic loading, 
gravitational loading, and the damping loading respectively. 

 
For a flexible body consisting of continuous materials, the 

inertia loading, elastic loading, and the gravitational loading are 
usually integrals along the body, which demonstrate the 
challenge that this paper attempts to address. Figure 2 shows 
the kinematic configuration of the ݅th segment in a continuum 
robot. Note that since the angular energy was reported to 
contribute only 5% of the total energy [17], the angular loading 
in this paper is neglected in the dynamic formulation. The 
assumptions used in the formulation are listed as follows: 
A1: Each segment bends in a circular arc shape, i.e. each 
segment conducts constant curvature bending. 
A2: The circular shape bending does not involve twist motion, 
i.e. there is no torsional effect in elastic loading. 
A3: Three local parameters (ߠ ݎ , , ߮ ) totally define the 
segment configuration. Each segment is driven by three 
actuators. 
A4: The extensional and bending deformations are independent, 
thus the elastic loading follows the superposition principle of 
ideal elastic body. 
A5: The angular loading of slice ݔ is negligible. 

3 EVALUATION OF THE LOADING INTEGRALS 
USING THE SEPARATION OF VARIABLES METHOD 

The key to evaluate the integrals analytically is to separate 
the integral variable from the non-integral terms. This requires 
a good mathematical representation that contains the integral 
variable explicitly. The homogeneous transformation usually 
mixes all terms together which makes this separation difficult. 
By observing the problem setting in Fig. 2, it is found that the 
slice ݔ can be regarded as a slice at ௜ܱ  being rotated ߠݔ௜ 
with respect to the axis ܛ௜ which passes through the curvature 
center ܳ௜  and is perpendicular to the bending plane. This 
observation allows representing each slice of the continuum 
segment by a linear form of the integral variable ݔ. By doing 
so, the integral variable is explicitly isolated with other non-
integral terms, which facilitates the following integration 
procedures significantly. 

 
3.1     Inertia Loadings of the ࢏th Segment 

The inertia loading of the ݅th segment can be obtained by 
the integral 

ૌ௜,௜௡௥ ൌ න ۸௜,௫,௩
் ݀݉௜ܞሶ௜,௫

ଵ

଴
 (4) 

where ݀݉௜ is the mass of slice ݔ and ۸௜,௫,௩ is the Jacobian of 
the slice center ௜ܱ,௫  (also the center of mass). ܞሶ௜,௫  is the 
acceleration of ௜ܱ,௫. The slice mass can be further obtained by 
the infinitesimal ݀ݔ of the integral variable 

݀݉௜ ൌ
௜ܯ

௜ݎ௜ߠ
 (5) ݔ݀

Note that the angular part of Eq. (4) is neglected due to 
assumption A5. For the rest of the linear inertia loading, 
position vector ܘ௜,௫ of the slice ݔ center ௜ܱ,௫ is required at 
first. By observing the geometry in Fig. 1, a good kinematic 
representation to isolate the integral variable is 

௜,௫ܘ ൌ ௜ܙ ൅ s௫܉௜ െ c௫܊௜ (6) 

where s௫ ൌ sinߠ௜ݔ  and c௫ ൌ cosߠ௜ݔ ௜ܙ . ௜܉ , , and ܊௜  are 
given in Eqs. (7) - (9). 

௜ܙ ൌ ௜ܘ ൅ 	௜܊ (7) 

௜܉ ൌ 	௜ܢ௜ݎ (8) 

௜܊ ൌ ௜ܠ௜ሺcos߮௜ݎ ൅ sin߮௜ܡ௜ሻ (9) 

Differentiating Eq. (6) yields the velocity of ௜ܱ,௫ 

௜,௫ܞ ൌ ሶܙ ௜ ൅ s௫܉ሶ ௜ ൅ ሶ௜ߠ௜܉c௫ݔ െ c௫܊ሶ ௜ ൅  ሶ௜ (10)ߠ௜܊s௫ݔ

The corresponding Jacobian transpose may be obtained as 

۸௜,௫,௩
் ൌ ۸௜,௤

் ൅ s௫۸௜,௔
் ൅ c௫۸௜,ఏݔ

் ௜܉
் െ c௫۸௜,௕

் ൅ s௫۸௜,ఏݔ
் ௜܊

் (11) 

 

Figure 2: Kinematic configurations of the ࢏th 
segment and one slice in the segment 
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where ۸௜,௤, ۸௜,௔, ۸௜,௕, and ۸௜,ఏ are the Jacobians of ܙሶ ௜, ܉ሶ ௜, ܊ሶ ௜, 

and ߠሶ௜  respectively. Since the integral variable is separated 
from the non-integral terms in Eq. (11), vector representation 
may be applied to separate the non-integral terms (without ݔ 
in subscripts), as shown in Eq. (12). 

۸௜,௫,௩
் ൌ ۸௜,௩

் ∘  ሻ (12)ݔ௜,௩ሺࢌ

where “∘” denotes the block wise matrix multiplication (each 
block is treated as an entry for evaluation). 

۸௜,௩
் ൌ ሾ۸௜,௤

் ۸௜,௔
் ۸௜,ఏ

் ௜܉
் ۸௜,௕

் ۸௜,ఏ
் ௜܊

்ሿ (13) 

ሻݔ௜,௩ሺࢌ ൌ ሾ1 s௫ c௫ݔ െc௫  s௫ሿ் (14)ݔ

Similarly, differentiating the velocities gives the acceleration 
relationship 

ሶ௜,௫ܞ ൌ ሷܙ ௜ ൅ s௫܉ሷ ௜ ൅ ሶ܉c௫ݔ2 ௜ߠሶ௜ ൅ ሷ௜ߠ௜܉c௫ݔ െ ሶ௜ߠ௜܉ଶs௫ݔ
ଶ 

െc௫܊ሷ ௜ ൅ ሶ܊s௫ݔ2 ௜ߠሶ௜ ൅ ሷ௜ߠ௜܊s௫ݔ ൅ ሶ௜ߠ௜܊ଶc௫ݔ
ଶ 

 

     ൌ ௜,௔ࢌ ∘  ௜,௩  (15)ܐ

where 

௜,௩ܐ
் ൌ ሾܙሷ ௜

ሷ܉		் ௜
ሶ܉		் ௜

௜܉		ሶ௜ߠ்
௜܉		ሷ௜ߠ்

ሶ௜ߠ்
ଶ		܊ሷ ௜

ሶ܊		் ௜
௜܊		ሶ௜ߠ்

௜܊		ሷ௜ߠ்
ሶ௜ߠ்

ଶሿ (16) 

ሻݔ௜,௔ሺࢌ ൌ ሾ1		s௫		2ݔc௫		ݔc௫ 		െ ଶs௫ݔ 		െ c௫		2ݔs௫		ݔs௫	 ଶc௫ሿݔ (17) 

Therefore, the linear inertia loading ૌ௜,௜௡௥,௩ is evaluated as 

ૌ௜,௜௡௥,௩ ൌ
௜ܯ

௜ݎ௜ߠ
න ۸௜,௩

்
ଵ

଴
∘ ሻݔ௜,௔ሺࢌሻݔ௜,௩ሺࢌ ∘   ݔ௜,௩݀ܐ

ൌ
௜ܯ

௜ݎ௜ߠ
۸௜,௩
் ∘ ௜,௩ۿ ∘  ௜,௩ (18)ܐ

where ۿ௜,௩ሺߠ௜ሻ ൌ ׬ ሻݔ௜,௔ሺࢌሻݔ௜,௩ሺࢌ
ଵ
଴ ݔ݀  is a precomputed 

matrix only depending on ߠ௜. Note that all kinematic terms 
without involving the integral variable are obtained by the 
segment wise kinematic analysis in section 4.1. 
 
3.2     Elastic Loadings 

The elastic loading accounts for the torque conquering 
material deformation. Two types of deformation are considered 
in this paper for the constant curvature continuum robots: 
extension and bending. The torsional effects are neglected and 
the extensional and bending deformation are assumed to be 
independent. Therefore, the elastic loading satisfies the 
superposition principle, which is given as 

ૌ௜,௘௟௦ ൌ ૌ௜,௘௫௧ ൅ ૌ௜,௕௡ௗ (19) 

where ૌ௜,௘௟௦ , ૌ௜,௘௫௧ , and ૌ௜,௕௡ௗ  represent the elastic loading, 
the extensional elastic loading, and the bending elastic loading 
respectively. ૌ௜,௘௫௧ is obtained by calculating the virtual work 
for slice ݔ due to the extensional force, which is calculated as 

۴௜,௫,௘௫௧ ൌ නߪ௜,௫ܢ௜,௫݀ܣ
஺

ൌ  ௜,௫ (20)ܢܣ௜ߝܧ

where ܣ ൌ ଶܴߨ  is the slice cross section area, ߪ௜,௫  is the 
stress, ܧ is the elastic module, and ߝ௜,௫ ൌ ሺߠ௜ݎ௜ െ  ௜,଴ isܮ/௜,଴ሻܮ
the strain. Note that the integral is evaluated based on the 
independent deformation assumption. Therefore, the virtual 
work of the extensional force is given by 

ߜ ௜ܹ,௫,௘௫௧ ൌ ௜,௫ܢ௜,௫ݑߜ
் ۴௜,௫,௘௫௧ ൌ  ௜,௫ (21)ݑߜܣ௜ߝܧ

where ݑߜ௜,௫ is the virtual extensional quantity of slice ݔ and 
is given in Eq. (22). 

௜,௫ݑߜ ൌ ௜ሻݎ௜ߠݔሺ݀ߜ ൌ ௜ߠߜ௜ݎሺݔ݀ ൅   ௜ሻݎߜ௜ߠ

                     ൌ ௜,ఏܒ௜ݎ൫ݔ்݀ܙߜ
் ൅ ௜,௥ܒ௜ߠ

் ൯  (22) 

Therefore, the virtual work due to extensional elastic force is 
simplified into Eq. (23) and the extensional elastic loading 
ૌ௜,௘௫௧ is obtained by Eq. (24) accordingly. 

ߜ ௜ܹ,௫,௘௫௧ ൌ ௜,ఏܒ௜ݎ൫ܣ௜ߝܧ்ܙߜ
் ൅ ௜,௥ܒ௜ߠ

் ൯݀ݔ ൌ  ૌ௜,௫,௘௫௧ (23)்ܙߜ

ૌ௜,௘௫௧ ൌ න ૌ௜,௫,௘௫௧
ଵ

଴
ൌ
௜ݎ௜ߠ൫ܧଶܴߨ െ ௜,଴൯ܮ

௜,଴ܮ
൫ݎ௜ܒ௜,ఏ

் ൅ ௜,௥ܒ௜ߠ
் ൯ (24) 

Similarly, the torque conquering bending deformation of 
segment ݅ is calculated as 

௜,௕௡ௗۻ ൌ  ௜ (25)ܛ௜ߢܭ

where ܭ is the bending stiffness, ߢ௜ ൌ ௜ݎ/1  is the segment 
curvature, and ܛ௜  is the unit vector going through ܳ௜  and 
perpendicular to the bending plane. Note that the common used 
bending stiffness formula ܭ ൌ  ௫௫ is the area momentܫ) ௫௫ܫܧ
of inertia) is not applicable here since the segments consist of 
actuators instead of solid elastic cores. The corresponding 
virtual curvature change is 

௜ߢߜ ൌ ߜ ൬
1
௜ݎ
൰ ൌ െ

1
௜ݎ
ଶ ௜ݎߜ ൌ െ

1
௜ݎ
ଶ ܙߜ

௜,௥ܒ்
்  (26) 

Therefore, the virtual work due to bending elastic force is 
calculated as 

ߜ ௜ܹ,௕௡ௗ ൌ ௜ܛ௜ߢߜ
   ௜,௕௡ௗۻ்

     ൌ െ
ଵ

௥೔
మ ܙߜ

௜,௥ܒ்
்    ௜ߢܭ

 ൌ  ૌ௜,௕௡ௗ (27)்ܙߜ

which yields the segment wise bending elastic loading 

ૌ௜,௕௡ௗ ൌ െ
ܭ
௜ݎ
ଷ ௜,௥ܒ

்  (28) 
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3.3     Gravitational and Damping Loadings 
The segment loading due to gravity is computed by the 

integral of the gravity loadings of slice ݔ, as given in Eq. (29). 

ૌ௜,௚௩௧ ൌ න ۸௜,௫,௩
் ݀݉௜gܢ଴

ଵ

଴
ൌ
௜gܯ
௜ݎ௜ߠ

න ۸௜,௫,௩
் ݔ଴݀ܢ

ଵ

଴
  

ൌ
௜gܯ
௜ݎ௜ߠ

ሺ۸௜,௩
் ∘ ۵ሻܢ଴ (29) 

where ۵ሺߠ௜ሻ ൌ ׬ ݔሻ݀ݔ௜,௩ሺࢌ
ଵ
଴  and g is the gravity constant. By 

observing the expressions of ۵ and ۿ௜,௩, it is easy to find that 
۵ is actually the first column of ۿ௜,௩. 

The damping loading is modeled as bending friction force 
that is proportional to the bending curvature changing rate. 
Therefore, mimicking the derivation of the bending elastic 
loading yields the damping loading as 

ૌ௜,ௗ௠௣ ൌ
ܿ௜,ௗ௠௣ݎሶ௜
௜ݎ
ସ ௜,௥ܒ

்  (30) 

where ܿ௜,ௗ௠௣ is the damping coefficient. 
 
3.4     Actuation Jacobians 

Actuation Jacobian is related to the actual actuation type. 
The most commonly used actuation scheme for extensible 
continuum robot is to use three flexible linear actuators which 
could be realized by tendons [1, 13], hydraulisc [20], artificial 
muscles/pneumatics [14], Shape Memory Alloys [21], etc. 

 
For this type of actuator deployment, the actuation 

Jacobian is derived by differentiating the actuator length ݈௜,௝, 
which is given in Eq. (31) where ݅ represents the ݅th segment 
and ݆ denotes the ݆th actuator. 

݈௜,௝ ൌ ݆											௜,௝ݎ௜ߠ ൌ 1,2,3 (31) 

௜,௝ݎ ൌ ௜ݎ െ ܴcos	ሺ
ߨ2
3
݆ െ ߮௜ െ

ߨ
6
ሻ (32) 

Differentiating Eq. (31) yields 

݈ሶ௜,௝ ൌ ሶ௜ߠ௜ݎ ൅ ሶ௜ݎ௜ߠ െ ܴ cos ൬
ߨ2
3
݆ െ ߮௜ െ

ߨ
6
൰ߠሶ௜  

െܴߠ௜sinሺ
ߨ2
3
݆ െ ߮௜ െ

ߨ
6
ሻ ሶ߮ ௜ (33) 

Therefore, the Jacobian for the ݆th actuator in the ݅th segment 
is obtained by Eq. (34) and the overall Jacobian for the ݅th 
segment is given in Eq. (35). Note that the ܒ௜,ఏ, ܒ௜,௥, and the 
 ௜,ఝ are the trivia Jacobians (for the generalized coordinatesܒ

ܙ ൌ ሾݍଵ ௞ݍ⋯ ௞ܒ ,௡ሿ்ݍ⋯ ൌ ሾ0⋯1⋯0ሿ is the trivia Jacobian 
of ݍ௞) of ߠ௜, ݎ௜ and ߮௜ respectively. 

௜,௝,௔௖௧ܒ ൌ ௜,ఏܒ௜ݎ ൅ ௜,௥ܒ௜ߠ െ ܴ cos ൬
ߨ2
3
݆ െ ߮௜ െ

ߨ
6
൰    ௜,ఏܒ

െܴߠ௜sinሺ
ߨ2
3
݆ െ ߮௜ െ

ߨ
6
ሻܒ௜,ఝ (34) 

۸௜,௔௖௧
் ൌ ሾܒ௜,ଵ,௔௖௧

் ௜,ଶ,௔௖௧ܒ
் ௜,ଷ,௔௖௧ܒ

் ሿ (35) 

4 RECURSIVE CALCULATION OF THE 
PROPOSED DYNAMIC MODEL 

This section presents the implementation algorithm of the 
proposed dynamic model. The inverse dynamics is computed 
first and the forward dynamics is then derived based on the 
inverse dynamics.  
 
4.1     Segment Wise Kinematic Propagation 

The forward propagation of the segment-wise kinematics is 
required in the recursive computation process. Since there is no 
integral variable involved in the segment-wise calculation, the 
propagation formulas are obtained by the same procedure as for 
the rigid body system (which can be found in most mechanics 
books, such as in reference [22]). That is, find the position 
relationship first, and then derive the velocity propagation and 
acceleration propagation by direct differentiations.  

The segment wise position and orientation propagations 
are calculated as in Eqs. (36) - (37) where sఏ௠ ൌ sin	ߠ୧ିଵ and 
cఏ௠ ൌ cos	ߠ୧ିଵ. 

௜܀ ൌ  ௜ିଵ (36)܀ො೔షభఏ೔షభܛ݁

௜ܘ ൌ ௜ିଵܘ ൅ sఏ௠܉௜ିଵ ൅ ሺ1 െ cఏ௠ሻ܊௜ିଵ (37) 

After obtaining the position relationships, the velocities and 
accelerations can be obtained by differentiating Eqs. (36) - (37) 
directly. Eq. (38) gives the angular velocity propagation 
formula. 

૑ෝ௜ ൌ ො೔షభఏ೔షభܛො೔షభఏ೔షభ૑ෝ௜ିଵ݁ିܛ݁ ൅
௜ିଵߠො௜ିଵܛ݀

ݐ݀
 (38) 

 
4.2     Numerical Algorithm to Compute the Inverse 
Dynamics  

The inverse dynamics are computed recursively from the 
first segment to the last segment where the algorithm computes 
all required kinematic information first by forward propagation 
and then obtain the corresponding loadings for each segment. 
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Figure 3: Actuator deployment of the ࢏th segment 
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After summing up all the dynamic loadings, the actuation 
Jacobians are used to map the total loading back to the joint 
space, which are the required actuator inputs. Algorithm 1 
shows the details of the inverse dynamics computation. 

 
 
4.3     Obtain the Forward Dynamics Based on the 
Inverse Dynamics 

Although the inverse dynamics is usually good enough for 
the practical application, forward dynamics is also desired for 
the purpose of simulations. Based on reference [22], forward 
dynamics could be obtained using the so called “differential 
inverse dynamics function” (pages 102-103 of reference [22]) 
which is given in Eq. (39) where ۸ఛ்ૌ ൌ IDሺmd, ,ܙ ሶܙ , ሷܙ ሻ is the 
inverse dynamics in the generalized space. 

IDఋሺmd, ,ܙ ሷܙ ሻ ൌ IDሺmd, ,ܙ ሶܙ , ሷܙ ሻ െ IDሺmd, ,ܙ ሶܙ , ૙ሻ  (39) 

By using the differential inverse dynamics function, the system 
inertia matrix ۶ can be obtain by Eq. (40) where ܐఈ is the 
 thߙ th column of ۶ and ઼ఈ is the unit vector with 1 on theߙ
entry. 

஑ܐ ൌ IDሺmodel, ,ܙ ሶܙ , ઼஑ሻ െ IDሺmodel, ,ܙ ሶܙ , ૙ሻ  (40) 

The forward dynamics is then formulated as 

ሷܙ۶ ൌ ۸ఛ்ૌ െ IDሺmodel, ,ܙ ሶܙ , ૙ሻ  (41) 

where ૌ is the actuator input vector. 

 

5 NUMERICAL SIMULATIONS 
This section presents the numerical simulations of the 

proposed dynamic model for which all computations are 
conducted in Matlab. The continuum robot under consideration 
is a two-segment structure with three intrinsic actuators for 
each segment, as illustrated in Fig. 1. Table 1 summarizes the 
parameter values used in the simulations. It is worth noting that 
for models relying on the constant curvature assumption, a 
singularity occurs when the curvature equals zero (i.e. the 
radius ݎ௜ goes to infinity or radius angle ߠ௜ goes to zero). For 
this case, special care must be taken to avoid the singularity. In 
numerical implementation, this may be done by setting a 
threshold (for instance, ݎ௜ ൐ 100) and substituting the singular 
terms by their corresponding asymptotic values (for instance, 
the inertia loading in Eq. (18) is recomputed by assuming that 
௜ܱ ௜ܱାଵ is a line segment instead of an arc). However, this kind 

of handling may introduce unknown dynamic effects into the 
model and thus generate inaccurate results. Therefore, the 
trajectories in the simulations are selected to satisfy the test 
purposes and avoid the singularities at the same time. 

Three cases are simulated to test the algorithms. The first 
case is the free falling test, for which the actuators are all set to 
zero and the robot is released from a stationary position near 
the horizontal plane (ߢଵ ൌ ଶߢ ൌ 0.13 and ߮ଵ ൌ ߮ଶ ൌ െ2/ߨ 
to avoid the singularities). Figure 4 shows the time-lapse image 
of robot and Fig. 5 plots the corresponding curvature responses. 
Each frame in Fig. 4 has the same time interval of 0.05s and 
the transparency increases as time elapses. Due to the damping 
effects, the robot approaches stable position after two 
oscillations (around	1.2s). 

 

 

Algorithm 1 Inverse Dynamics Computation 

for segment ݅ ൌ 1:ܰ do 
Evaluate the integral matrices ۿ௜,௩ and ۵௜ 
Compute Jacobians ۸௜,௔௖௧ and concatenate ۸௔௖௧ 
Compute the required position information 
Compute ۸௜,௩ 
Compute the required velocity information 
Compute the required acceleration information 
Compute ܐ௜,௩ 
Compute ૌ௜,௜௡௥, ૌ௜,௘௟௦, ૌ௜,௚௩௧, and ૌ௜,ௗ௠௣ 

Compute ૌ௜,௟௢௔ௗ ൌ ૌ௜,௜௡௥ ൅ ૌ௜,௘௟௦ ൅ ૌ௜,ௗ௠௣ ൅ ૌ௜,௚௩௧ 
Compute ૌ௟௢௔ௗ൅ൌ ૌ௜,௟௢௔ௗ 

end for 

Compute the actuator force ૌ௔௖௧ ൌ ۸௔௖௧் ିଵ
ૌ௟௢௔ௗ 

Table 1. Simulation Parameters 

Var. Value Var. Value 

ܴ 0.0325m ܿ௜,ௗ௠௣ 0.05	N	m	s/radଶ 
 ௜,଴ 0.24m g 9.8067m/sଶܮ
 mଶ	N	0.25 ܭ 15MPa ܧ
   0.255Kg ܯ

  

Figure 4: Time-lapse of the zero actuation response

 

Figure 5: Curvature response of the zero actuation 
case 
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The second and the third cases are to evaluate the robot’s 
performances under actuation, for which one in-plane bending 
and one out-of-plane bending are simulated. The in-plane 
bending applies ૌ௔௖௧,௜௣  on the actuators with the stationary 
initial position ߢଵ ൌ ଶߢ ൌ 0.13 and ߮ଵ ൌ ߮ଶ ൌ -The out .2/ߨ
of-plane bending utilizes ૌ௔௖௧,௢௣ as the input and ߢଵ ൌ ଶߢ ൌ
0.13  and ߮ଵ ൌ ߮ଶ ൌ െ2/ߨ  as the initial condition (keeps 
stationary as other cases). Figure 6 illustrates the time-lapse 
responses (0.067s time interval) for both bending and Fig. 7 
shows the curvature and curvature plane rotation responses of 
the out-of-plane bending case. From Fig. 7, low frequency 
oscillations in ߮ଵ and high frequency oscillations in ߮ଶ are 
observed, which reveals the complicated transient behaviors of 
soft body dynamics. 

ૌୟୡ୲,୧୮ ൌ ሾെ180 0 0 െ60 0 0ሿ୘N	 (42) 

ૌ௔௖௧,௢௣ ൌ ሾ0 െ60 60 0 60 െ60ሿ்ܰ (43) 

 

 

6 CONCLUSIONS AND FUTURE WORK 
In this paper, an analytical dynamic model was developed 

as an extension to constant curvature continuum robots. The 
loading integrals were successfully evaluated by the separation 
of variables method such that the integral variable is separated 
from the non-integral terms. By doing so, the overall dynamic 
loadings can be computed as a traditional rigid body system 
and the integrals are evaluated in advance. The virtual work 
principle is used to assemble the dynamic loadings into the 
equation of motion while the differential inverse dynamics 
function is utilized to obtain the forward dynamics. A recursive 
algorithm based on the new inverse dynamic is proposed too. 
Numerical simulations for a two-segment continuum robot are 
conducted to validate the formulated model. 

 Since the model in this paper neglected the angular 
contributions of each slice, one main focus for future work will 
be on introducing these angular loadings into the model for 
better accuracy. In addition, more strict comparisons with other 
methods and most importantly, with hardware experiments, are 
required to verify the correctness of the proposed model. 
Finally, generalizing the methodology to other lumped 
parameter kinematic models of continuum robots will be 
another focus for future work. 
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APPENDIX 
In the following formulas, ࣂ܋ ൌ ࢏ࣂܛܗ܋ ࣂܛ , ൌ ࢏ࣂܖܑܛ , 
ࣂ૛܋ ൌ ࣂ૛ܛ ,࢏ࣂ૛ܛܗ܋ ൌ  ࢜,࢏ۿ The components of matrix .࢏ࣂ૛ܖܑܛ
are listed as follows. 
௜,௩ሺ1,1ሻۿ ൌ 1  
௜,௩ሺ2,1ሻۿ ൌ ௜,௩ሺ1,2ሻۿ ൌ ሺ1 െ cఏሻ/ߠ௜  
௜,௩ሺ3,1ሻۿ ൌ ௜,௩ሺ1,4ሻۿ ൌ ሺെ1 ൅ cఏ ൅ ௜ߠ/௜sఏሻߠ

ଶ  
௜,௩ሺ4,1ሻۿ ൌ ௜,௩ሺ1,6ሻۿ ൌ െsఏ/ߠ௜  
௜,௩ሺ5,1ሻۿ ൌ ௜,௩ሺ1,8ሻۿ ൌ ሺെߠ௜cఏ ൅ sఏሻ/ߠ௜

ଶ  
௜,௩ሺ2,2ሻۿ ൌ 1 െ ௜,௩ሺ4,6ሻۿ ൌ 1/2 െ sଶఏ/ሺ4ߠ௜	ሻ  
௜,௩ሺ3,2ሻۿ ൌ ሺെ2ߠ௜cଶఏ ൅ sଶఏሻ/ሺ8ߠ௜

ଶሻ   
௜,௩ሺ3,2ሻۿ ൌ ௜,௩ሺ2,4ሻۿ ൌ െۿ௜,௩ሺ5,6ሻ ൌ െۿ௜,௩ሺ4,8ሻ  
௜,௩ሺ4,2ሻۿ ൌ ௜,௩ሺ2,6ሻۿ ൌ ሺsଶఏ െ 1ሻ/ሺ4ߠ௜	ሻ  
௜,௩ሺ5,2ሻۿ ൌ ௜,௩ሺ2,8ሻۿ ൌ ሺ1 െ cଶఏ െ ௜sଶఏߠ2 ൅ ௜ߠ2

ଶሻ/ሺ8ߠ௜
ଶሻ  

௜,௩ሺ3,4ሻۿ ൌ ሺ4ߠ௜
ଷ ൅ ௜cଶఏߠ6 ൅ ሺ6ߠ௜

ଶ െ 3ሻsଶఏሻ/ሺ24ߠ௜
ଷሻ  

௜,௩ሺ3,4ሻۿ ൌ െۿ௜,௩ሺ4,9ሻ  
௜,௩ሺ4,4ሻۿ ൌ ௜,௩ሺ3,6ሻۿ ൌ ௜,௩ሺ5,2ሻۿ െ 1/2  
௜,௩ሺ5,4ሻۿ ൌ ሺെ1 ൅ ሺ1 െ ௜ߠ2

ଶሻcଶఏ ൅ ௜ߠ௜sଶఏሻ/ሺ8ߠ2
ଷሻ  

௜,௩ሺ5,4ሻۿ ൌ ௜,௩ሺ4,5ሻۿ ൌ ௜,௩ሺ3,8ሻۿ ൌ   ௜,௩ሺ2,9ሻۿ
:௜,௩ሺۿ ,3ሻ ൌ :௜,௩ሺۿ2 ,4ሻ  
௜,௩ሺ1,5ሻۿ ൌ ሺ2 ൅ ሺߠ௜

ଶ െ 2ሻcఏ െ ௜ߠ/௜sఏሻߠ2
ଷ  

௜,௩ሺ2,5ሻۿ ൌ െۿ௜,௩ሺ5,8ሻ ൌ ௜,௩ሺ3,4ሻۿ െ 1/3  
௜,௩ሺ3,5ሻۿ ൌ ሺ2ߠ௜ሺ2ߠ௜

ଶ െ 3ሻcଶఏ െ ሺ6ߠ௜
ଶ െ 3ሻsଶఏሻ/ሺ16ߠ௜

ସሻ  

 

Figure 6: Time-lapse of the in-plane and out-of-plane 
bending responses 

 
Figure 7: Curvature and curvature plane rotation 

responses of the out-of-plane bending 
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௜,௩ሺ3,5ሻۿ ൌ െۿ௜,௩ሺ5,9ሻ  
௜,௩ሺ5,5ሻۿ ൌ ሺ3 ൅ ௜ߠ௜ሺ2ߠ2

ଶ െ 3ሻsଶఏ ൅ ሺ6ߠ௜
ଶ െ 3ሻcଶఏ െ

௜ߠ2
ସሻ/ሺ16ߠ௜

ସሻ  
௜,௩ሺ5,5ሻۿ ൌ ௜,௩ሺ3,9ሻۿ െ 1/4  
:௜,௩ሺۿ ,7ሻ ൌ :௜,௩ሺۿ2 ,8ሻ  
௜,௩ሺ1,9ሻۿ ൌ ሺሺߠ௜

ଶ െ 2ሻsఏ ൅ ௜ߠ/௜cఏሻߠ2
ଷ  
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