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ABSTRACT 
This paper presents a target detection technique, which 

combines a supervised learning model with sensor data to 
eliminate false positives for a given input image frame. Such a 
technique aids with selective docking procedures where 
multiple robots are present in the environment. Hence the 
sensor data provides additional information for this decision 
making process. Senor accuracy plays a crucial role when the 
motion of the robot is defined by the use of data recorded by its 
sensors. The uncertainties in the sensory data can cause 
misalignments due to poor calibration of the sensor, which can 
result in poor positioning of the robot relative to its target. Such 
misalignments can play a significant role where certain 
accuracy is desired. Therefore, it is necessary to minimize such 
misalignments to achieve certainty for the robot interaction 
with its target. The work proposed in this paper allows 
achieving such accuracy using a vision-based approach by 
eliminating all false occurrences leading to selective 
interactions with the target. The proposed methodology is 
validated using a self-reconfigurable mobile robot capable of 
hybrid Wheeled-Tracked mobility, as an application towards 
autonomous docking of mobile robotic modules.  

Keywords: Autonomous Docking, Image processing, 
Target detection and tracking, Self-reconfigurable robots.  

1 INTRODUCTION 
The autonomy of robots has been on the rise with an 

increasing demand for versatile, intelligent, and adaptable 
robotic structures [1-5]. Modern-day robots are equipped with 
multiple sensors to collect data from the surrounding for an 
intelligent decision-making process. An example of such robots 
has been shown in Fig. 1(a) and 1(b), where the symmetrically 
invertible robots are equipped with onboard sensors to help the 

robot navigate and interact in an unknown environment. These 
autonomously operating robots can be assigned to move from 
point A to point B with a mere interaction of onboard sensors 
with the robots’ surroundings. In the last decade, the use of 
Neural Networks has been substantial [6-8] and has emerged as 
one of the key focus areas in the field of computer vision, 
particularly as an application for object detection, classification, 
tracking, etc. (herein objects have been referred to as targets). 
Using such an approach, these robots can be programmed to 
quickly make intelligent decisions to avoid any obstacles 
whether they are static or dynamic to reach their destination. 
These networks can be trained to solve the problems of feature 
detection and image classification. The amount of information 
available with the image is of great importance while designing 
such networks as it can increase the network complexity and 
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Figure 1. Symmetrically invertible modular robots (a) 

Locomotion robot, (b) Manipulator robot 
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computation cost. Recently, proposed networks have shown a 
great prospect in application to the field of robotics due to their 
reliability with vision-based sensors [6-8]. 

To begin with the proposed approach, a motivating 
application involving multi-robot assembly has been shown in 
Fig. 2 [9-11]. A Self Transformable Robotic Module (STORM) 
has been developed [12], which consists of two main parts, i.e., 
Hybrid-Wheeled locomotion robot and a manipulator robot as 
shown in Fig. 2.  In the example shown in Fig. 2, the combined 
formation consists of a manipulator robot and two locomotion 
robots which consist of coupling mechanisms called GHEFT 
(Genderless High strength Efficient Fail-safe and high 
misalignment Tolerant) [13]. This selection has been 
highlighted based on the review of the coupling mechanism in 
[14] and due to its misalignment tolerance capacity along X-Y-
Z-roll-pitch-yaw axes of (6, 25, 11) mm and (45, 11, 11) 
degrees respectively. The 2-DOF genderless docking 
mechanism allows for independent clamping translation and the 
rotation of the mechanism. These symmetrically invertible 
robots can operate under flip-over conditions. The locomotion 
robot is equipped with a Hybrid-Wheeled assembly capable of 
exhibiting bi-directional mobility along the longitudinal and 
lateral direction. As part of a future application, it is proposed 
that the two locomotion robots will approach a manipulator 
robot from either side using path planning techniques as shown 
in Fig. 2 (e.g. using Pozyx sensor due to their better accuracy 
compared to other position based sensors such as GPS, 
Bluetooth, Wi-Fi) [15-17]. However, these sensors fail to 
provide an absolute positioning of the target which fails to dock 
under autonomous locomotion. To align the robots within the 
misalignment tolerance range of the docking GHEFT 
mechanism, a vision-based approach is used. The inaccuracies 
related to these sensors can be used to estimate the Region of 
Interest (RoI) which further will be combined with the detection 
technique to extract the location of the target in the image 
plane.  

This approach serves as detection speed and accuracy 
improvement over the Hybrid-Target Tracking technique 
proposed in [18]. The error in the positioning sensor accounts 
for the use of such detection techniques due to its lower 

complexity and faster tracking with better accuracy. Since this 
technique lacks the ability to handle scalability, pose, and 
variable lighting of the target, a new approach has been 
presented in this research, which is discussed in detail in later 
sections. The proposed approach can also be combined with the 
autonomous landing of drones using GPS based beacons, or 
RTK-GPS based positioning along with the use of vision-based 
markers.   

The paper starts with the introduction of the proposed 
approach followed by a discussion of the experimental setup 
and the results. Lastly, a brief conclusion summarizing the 
approach in this paper and directions for future work has also 
been presented.   

2 PROPOSED APPROACH 
The recent shift in the use of Neural Networks to classify 

different objects is a significant improvement over the 
conventional sliding window techniques such as Template 
Matching. The use of such networks allows achieving higher 
accuracy and precision with the detection even under changing 
scalability and lighting conditions. A classic example would be 
to detect the handwritten digits using LeNet-5 [7]. It is an 8-
layer structure consisting of an input layer, two convolutional 
layers, two sub-sampling layers, three fully connected layers, 
and an output layer. Here the number of output neurons varies 
from 0 to 9.  

The recent development in this research is the inclusion of 
YOLO (You Only Look Once) [8] object classifier, capable of 
detecting 80 classes with a mean average precision (mAP) of 
57.9%. These networks highly depend on the amount of 
training being used to generate the model. To achieve high 
accuracy with detections, such a network is equipped with a 
large number of convolutional layers, which increases the 
complexity and computation of the network. The 
implementation YOLO is not feasible on small portable micro-
computers such as Raspberry Pi due to their limited 
computation power. However, a small version of YOLO called 
YOLO-tiny presents much better compatibility on these 
devices. Such a network takes approximately 24-25 secs to 
process an image, which can be further reduced to 2-3 secs 
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Figure 2. 3 Robot docking shown in step-wise simulation for humanoid configuration performed in V-REP with 
STORM Locomotion and Manipulator module. 
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using NNPACK. NNPACK is an acceleration package for 
Neural Network computations for multi-core CPUs. Such an 
approach becomes redundant when we already have some 
estimation of the target position in the image plane. To 
highlight these issues, the paper presents the following two 
contributions: 
1. Integration of the sensor data with the detection

methodology to minimize the layer density of the CNN 
(Convolutional Neural Networks), which in turn speeds up 
the detection. 

2. Using sensor data to present the selective detection for
autonomous docking in mobile robots as an application for 
the proposed methodology. Such a method will help to 
eliminate the extra True-Positive (TP) and unnecessary 
False-Positive (FP) detections. Thus, it helps to achieve a 
higher True Positive Rate (ܴܶܲ ൌ ܶܲ ሺܶܲ ൅ ⁄ሻܰܨ ) and 
Positive Predictive Value (precision or PPV	ൌ
ܶܲ ሺܶܲ ൅ ⁄ܲܨ ሻ). Here, the term FN represents the False-
negative value. The detection behavior has been shown in 
Fig. 3, where multiple detections including both TP and FP 
detection formed on an image plane, relating to the 
detection of the target robots as seen from the source robot. 

The methodology proposed in this paper aims at using 
sensor data to reduce the computational load of CNN. A brief 
layout of the process flow-chart is shown in Fig. 4. The 
common available CNN models classify each object in terms of 
a class, such that a given frame could have n possible 
detections of the same class. Such methodology is limited to a 
search over the whole frame since there is no sensorial 
information available with the detected objects, e.g. person, car, 
etc. The proposed approach is validated by using a target 
attached to the side frame of the robot and using another robot 
as the initializer for the detection. The camera is attached to a 
Hybrid-Wheeled mobile robot (source), whereas the colored 
target is attached to the side frame of the manipulator robot 
(target). The proposed version of the algorithm takes into 
account the uneven behavior of the terrain with an added 
external tilt value along the Roll and Pitch axes. The final 
performance of the methodology is estimated by the time it 

takes to process and correctly identify the target in the image. 
The proposed methodology is an extension of the previous 

work mentioned in [18]. The previous version of the target 
tracking technique suffered from challenges such as scalability 
and changing illumination in the background. Moreover, it was 
further assumed that the target is always within the image plane 
as viewed by the camera. Furthermore, only one target was 
placed in the image frame as a proof of concept of the 
algorithm to avoid any false positive detections. Since phase 1 
of the algorithm provides the initial estimate of the detected 
target, the algorithm needs to provide a fast and reliable 
scalability invariant detection, in the presence of occlusion and 
light variability. Therefore, this paper proposes the use of a 
supervised learning model to counter the failures with phase 1 
detection of the previous algorithm [18]. There are several 
state-of-the-art supervised learning models available in the 
literature; however, they have network layers to detect all the 
possible trained object appearances at high accuracy. To do that, 
an image is used as an input to the detection model, where 
convolutional, pooling, activation, and other functions are 
applied to the image. In cases where only one object is present 
in an image, applying the above-mentioned operations on the 
whole image will be computationally expensive and highly 
complex. The inclusion of the sensor data to determine the 

Using onboard sensors to minimize target 
search area in the image plane
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Figure 4. Detection process before initializing the target tracking. 
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Positive (FP) and desired detections (red area). 
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relative pose and approximate position of the target helps in 
eliminating the false positive by minimizing the input region to 
the detection model. Furthermore, such an approach helps in 
minimizing the layer density/complexity of the network. 

The proposed approach takes advantage of the Pozyx 
sensory data available with the target robot(s) to differentiate 
the FP from TP detections. The positioning sensor can provide a 
2D and 3D positioning along with an onboard IMU sensor 
based on the reference recorded from the 4 anchors placed 
within the operating range. As shown in Fig. 3 if three targets 
are detected using a conventional CNN based approach, then 
the approach used in these applications eliminates the ܨ ଵܲ

detection leaving the robot with only two TP detections (ܶ ଵܲ 
and ܶ ଶܲ). The detected two TP targets are further differentiated 
using the sensor data from each target robot. Since each 
detected TP target will be identified by its sensory data, the 
docking becomes much easier in terms of target selectivity. 
This selectivity is shown in Fig. 3, marked by a red region, 
selecting ܶ ଶܲ out of ܶ ଵܲ and ܶ ଶܲ. Each TP detection of the 
marked region comprises an RGB LED colored marker, such 
that the camera attached to the side frame of the source robot is 
used to track the motion relative to the target robot in the Image 
Plane. An example of such a scenario has been shown in Fig. 5, 
where RGB colored markers represent the marker attached to 
the side frame of the target robot and top view of the source 
robot representing the detection using the onboard camera.  

The selected region is used as an input to find the position 
of the target (ݑ௧௔௥௚௘௧,  ௧௔௥௚௘௧) relative to the image planeݒ

,௥௢௜ݑ) ,௥௢௜ݒ ,௥௢௜ݓ ݄௥௢௜) based on the trained network model. 

௧௔௥௚௘௧ݑ ൌ ሺݑଶ െ
ଶݓ
2
൅ ௥௢௜ݑ ൅

௥௢௜ݓ
2
ሻ 

௧௔௥௚௘௧ݒ ൌ ሺݒଶ െ
݄ଶ
2
൅ ௥௢௜ݒ ൅

݄௥௢௜
2
ሻ 

(1) 

Since each occurrence of the target can vary in terms of 
scale and orientation, it is required to accommodate such 
variations using an additional approximation from the 
positioning sensors. To achieve this flexibility, the detected 
bounding box parameters (ݑ௣, ,௣ݒ ,ݓ ݄), are then used as the 
input for phase 2 of the algorithm defined by parallel tracking 
with the optical flow (ݑ௣ ൅ ,௣ݑ∆ ௣ݒ ൅ ,௣ݒ∆ ݐ ൅  and box (ݐ∆

segmentation for the LED (ܦܧܮଵ, ,ଶܦܧܮ  .ଷ) color trackingܦܧܮ
This optical flow process is shown in Fig. 6, where the input 
represents the bounding box coordinates given by the target 
detector and output represents the individual tracking of the 
colored markers using the color segmentation approach. The t 
value defines the update in the pixel coordinates of the tracked 
point over time. This flow estimate of the tracked coordinate is 
summarized as follows, 

,௣ݑ൫ܫ ,௣ݒ ൯ݐ ൌ ௣ݑሺܫ ൅ ,௣ݑ∆ ௣ݒ ൅ ,௣ݒ∆ ݐ ൅  ሻ (2)ݐ∆

These target LEDs are represented by a red-blue-green 
color combination (ݐଵ െ ଶݐ െ  ଷ) as shown in Fig. 5. Theݐ
projection of these colored targets on the image plane is given 
by ݐଵ

௣ െ ଶݐ
௣ െ ଷݐ

௣ and in terms of pixel coordinates as (ݑଵ, ,(ଵݒ
,ଶݑ) ,ଷݑ) ଶ), andݒ  ଷ). The use of optical flow technique inݒ
parallel to color tracking provides the following advantages:  

1. It delivers consistent tracking of the target robot, even
though the color tracking may fail at a certain time-
step providing consistency with the performance at the
same time.
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Figure 6. Target detector output for the phase 2 of the 
Hybrid Target Tracking (HTT) technique. 
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2. The use of limited RoI helps to improve the
performance speed and reduces the search (or
processing) area for color tracking compared to a
search over the entire image.

3. The optical flow estimate of the RoI also
accommodates the scalability of the target, in cases
where the source robot approaches (or moves away
from) the target robot.

A basic convolutional neural network consists of an input 
layer, an output layer, and multiple hidden layers (convolution 
and fully connected layers). The proposed model uses the raw 
image data based on the extracted RoI and generates the output 
in terms of the location of the desired target in that image. 
Thus, the output is defined in terms of the following 
parameters: width (w) and height (h) of the bounding box, pixel 
coordinates of the location, and the confidence value of the 
prediction. The aim is to minimize the number of filters by 
reducing the feature map size. 

3 EXPERIMENTAL SETUP 
The experimental setup to implement the algorithm on the 

mobile robot is discussed in this section.  
The training of the model was done using a host PC 

equipped with i5 Processor, 8GB RAM, and NVIDIA GTX 
1060 GPU. To validate the proposed algorithm, it was run on a 
Hybrid-Wheeled Mobile Robot equipped with an onboard 
Raspberry Pi 3 Model B computer (1GB RAM) and an IMU 
sensor to record the roll (α), pitch (ߚ), and yaw (γ) orientation 
of the robot. An Arducam 5MP camera was attached to the side 
frame of the source robot and an RGB colored marker was 
attached to the side frame of the target robot. A 400x400 image 
was captured to initialize the detection process.  

The bi-directional locomotion mechanism of the Hybrid-
Wheeled mobile robot, as shown in Fig. 7, allows for the switch 
in mobility based on the locomotion requirement on different 
terrains. The mechanism, which controls the bi-directional 
mobility of the robot is shown in Fig. 8(a). Fig. 8(b) shows the 
cut-section view of the robot, representing the Hybrid-Wheeled 
assembly attached to the track-actuated side frame of the robot. 
This bi-directional mobility allows the robot to move in the 
longitudinal direction using tracked locomotion mode and 
lateral direction using the wheeled locomotion mode. 
Additionally, the robots are equipped with a Pozyx sensor to get 
the positioning data (x, y, z) of the target robot with sub-meter 
accuracy, and an onboard IMU sensor to get the roll-pitch-yaw 
values (ߙ௦, ,௦ߚ ,௧ߙ) ௦) andߛ ,௧ߚ  ௧), of the source and target robotߛ
respectively. Here the subscript s and t represent the source and 
target robot respectively. The sensor data is transferred from the 
target robot to the source robot using an onboard Wi-Fi module 
on the Raspberry Pi. Apart from the sensors, the robot is 
capable of mobility (along with longitudinal and lateral 
directions) with an actuation of a prismatic joint. The robot is 
interfaced with a 2-DOF docking mechanism, which can 
tolerate mechanical misalignments along X-Y-Z and about the 

(a) (b)
Clamp profles Rotating case

Figure 7. STORM robot interfaced with GHEFT 
docking mechanism, showing (a) track-actuated    

mode, (b) Wheeled mode for multi-directional 
locomotion 
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Driving 
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Figure 8. Cut-section of Vertical Translational Unit which enables multi-directional mobility of the robot (a) dual 
drive mechanism using driving motors on either side for a synchronized motion, (b) prismatic joint between the 

Hybrid-Wheeled assembly and the side frame of the driving mechanism. 
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roll-pitch-yaw axes. 

ሺ∆ݔ, ,ݕ∆ ሻݖ∆ ൌ min	ሼሺݔ௦, ,௦ݕ ,௦ሻݖ ሺݔ௧, ,௧ݕ  ௧ሻሽ (3)ݖ

Here the (x, y, z) represents the positioning data while the s 
and the t subscript represent the source and the target robot 
respectively. The source robot was placed in close vicinity to 
the target robot considering the error along X-Y-Z axes based 
on the data given by the Pozyx sensors. In such a case, the 
minimization of the error using the IMU sensor data from the 
source and target robot can be given as 

ሺ∆ߙ, ,ߚ∆ ሻߛ∆ ൌ min	ሼሺߙ௦, ,௦ߚ ,௦ሻߛ ሺߙ௧, ,௧ߚ  ௧ሻሽ (4)ߛ

Here ሺߙ, ,ߚ  ሻ represents the roll-pitch-yaw angles recordedߛ
using onboard IMU data while s and t subscript represents the 
source and the target robot respectively. These error angle 
values are subject to fall within certain limit values defined as 

ሺ∆ߙ, ,ߚ∆ ሻߛ∆ ൌ ൝
௟ଵߙ ൏ ߙ∆ ൏ ௟ଶߙ
௟ଵߚ ൏ ߚ∆ ൏ ௟ଶߚ
௟ଵߛ ൏ ߛ∆ ൏ ௟ଶߛ

 (5) 

These limit values (ߙ௟ଵ, ,௟ଶߙ ,௟ଵߚ ,௟ଶߚ ,௟ଵߛ  ௟ଶ) are definedߛ
relative to the target robot. In case there are multiple robots in 
the environment, these values will adhere relatively to the target 
robot with which the source robot will interact. The initial 
orientation alignment for facing the docking mechanism of the 
source and the selected target robot can be done using Eq. (3) 
and Eq. (4). The limit values are used to accommodate the 
inaccuracy with both the positioning and the orientation of the 
robot. The initial RoI selection based on the sensor data is done 
by projecting the target pixel coordinates using the extrinsic 

parameters given by the Pozyx sensor (∆ݔ, ,ݕ∆  and IMU (ݖ∆
data (∆ߙ, ,ߚ∆  combined with the intrinsic parameters of the ,(ߛ∆
camera (݂, ,ߩ ,௢ݑ  ௢). These intrinsic parameters correspond toݒ
the focal length, pixel size, and the image center of the camera. 
The width (ݓ௥௢௜) and the height (݄௥௢௜) of the RoI are calculated 
using triangular similarity based on ∆ܼ, f and the actual 
dimensions (ݓ௧ and ݄௧) of the target. The real-world 
positioning helps in providing an approximate location estimate 
of the target in the image. Moreover, it helps to minimize the 
search area to be used as an input for the detection model. The 
detection of the RoI is followed by the optical flow technique 
for consistent tracking of the target. 

Apart from these listed error minimizations, an additional 
experimentation result has been shown in the following section 
to demonstrate the autonomous locomotion of the source robot 
relative to the target robot. 

4 EXPERIMENTAL RESULTS AND ANALYSIS 
The section presents a discussion related to the 

autonomous motion of the self-reconfigurable shown in Fig. 9 
and Fig. 10. Figure 9 represents the use of the proposed 
methodology on the locomotion robot, which is further utilized 
to track the target features in the Image Plane. Figure 9(a) 
shows the robot equipped with the Pozyx sensor to get the X-Y-
Z position of the target relative to the source robot. The 
trajectory of the robot has been shown in Fig. 9(b) in red. The 
robot is set to move from its initial position to the final position 
which is the center of the Image Plane. The motion of each 
colored feature on the Image plane is represented by red-blue-
green curves along the u and v axis, respectively, using Image-
Based Visual Servoing (IBVS) [19]. The motion of the features 
helps to demonstrate the convergence of the error between the 
initial pixel coordinates and the desired location (herein center 

Tracker

Target 
robot

RGB Target

POZYX sensor

Target 
robot

Source 
robot

Trajectory

(a) (b) (c)

Figure 9. (a) STORM locomotion robot equipped with Pozyx sensor, (b) Motion of the target features using Visual 
Servoing, (c) Curves representing u and v pixel motion for the three LED features.   
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of the Image Plane). There is a minor shift in the pixel 
coordinates of the features along the v axis which can be related 
to a minor vibration of the robot. The corresponding motion of 
the target features in the image plane, as viewed from the 
camera attached to the side frame of the robot is shown in Fig. 
10 (a). This translation motion along the X-axis will be 
followed by a sequence of motions along the Y-axis and the Z-
axis respectively (shown in Fig. 10(b)) to couple the docking 
mechanism of the source robot to that of the target robot as 
shown in Fig. 10(c). The final motion trajectory of the source 
robot relative to the target robot is shown in Fig. 10(d), which is 
generated using the onboard sensor data. 

Moreover, it should be noted that the current 
experimentation only included basic preliminary testing on a 
vinyl floor. The impact of vibrations can be high depending on 
the change in roughness or unevenness of the surface, e.g. 
gravel, grass, etc. Since this work is a part of ongoing research, 
the testing related to the target tracking on different surfaces 
[16] will be demonstrated as a part of future research. 

5 CONCLUSION AND FUTURE WORK 
This work presented a new approach in object tracking, 

which combines the sensor data with a supervised learning 
model to improve the detection accuracy of the targets and to 
provide flexibility for selective target tracking. The approach 
utilized sensor data to restrict the search area in the input 
image, thereby reducing the complexity and the difficulty of 
training the network. The availability of sensor data with the 
target serves as a preliminary estimate in this technique. The 
proposed methodology is implemented on a self-reconfigurable 
mobile robot for autonomous docking using IBVS in an indoor 
environment. However, the proposed technique will be further 
used to test the autonomous docking of the robotic modules in 
an outdoor environment using other sensors, which can provide 
better accuracy such as RTK-GPS.  

Future work involves outdoor testing of the robotic 
modules on uneven terrain to validate the proposed approach 
and the self-reconfigurability of mobile robots. The 
development of more robots will also help to generate a multi-
robot coordination network, which will help to illustrate the 
docking selectivity of the method. Furthermore, other networks 
can be analyzed to draw a performance comparison between the 
proposed approach and the existing methods. The effect of 
dimensionality reduction of the features in an image will also 
be analyzed in the future.  

REFERENCES 
[1] Zhong, M., Guo, W., Li, M., Xu, J., ”Tanbot: A Mobile 

Self-Reconfigurable Robot Enhanced with Embedded 
Positioning Module”, 2008 IEEE Workshop on Advanced 
Robotics and It's Social Impacts, Taipei, 2008, pp. 1-5. 

[2] Daudelin, J., Jing, G., Tosun, T., Yim, M., Gazit, H. K., 
Campbell, M., “An integrated system for perception-driven 
autonomy with modular robots”, IEEE Science Robotics, 
2018. doi: 10.1126/scirobotics.aat4983 

[3] Ben-Tzvi, P., Goldenberg, A. A., and Zu, J. W.,” 
Articulated hybrid mobile robot mechanism with 
composed mobility and manipulation and onboard wireless 
sensor/actuator control interfaces,” Mechatronics Journal, 
vol. 20, no. 6, pp. 627-639, Sept. 2010. 

[4] Murata, S., Kakomura, K., and Kurokawa, H.,” Docking 
Experiments of a modular robot by visual feedback,” 
International Conference on Intelligent Robots and 
Systems, Beijing, 2006, pp. 625-630. 

[5] Moubarak, P., P. Ben-Tzvi, "Adaptive Manipulation of a 
Hybrid Mechanism Mobile Robot", Proc. of the 2011 IEEE 
International Symposium on Robotic and Sensors 
Environments (ROSE 2011), Canada, pp. 113-118, Sept. 
17-18, 2011. 

[6] Ren, X. D., Guo, H. N., He, G. C., Xu, X., Di, C., Li, S. H., 
“Convolutional Neural Network Based on Principal 
Component Analysis Initialization for Image 

1
1000

900
800

Z (mm)

700
600

500
400

300‐1600
‐1500

‐1400
X (mm)

‐1300
‐1200

Y 
(m

m
)

‐1100

100

0

‐100

Inital Pos
Final Pos

Change 
of mode

Wheeled 
mode

Track
mode

Source 
clamps

Target 
clamps

(a) (b) (c) (d)
Fig. 10. (a) Feature error plots for the motion of the source robot along X, Y, Z and Yaw direction relative to the 

target robot, (b) Motion trajectory of the source robot represented in red color, (c) Clamping between the robots 
for self-reconfigurability, (d) Real world motion trajectory tracking of the robot. 

Copyright © 2020 ASMEV010T10A051-7

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83990/V010T10A051/6586943/v010t10a051-detc2020-22181.pdf by Virginia Polytechnic Institute and State U

niversity user on 21 M
ay 2021



Classification”, IEEE First International Conference on 
Data Science in Cyberspace (DSC), Changsha, pp. 329-
334, 2016. doi: 10.1109/DSC.2016.18. 

[7] Lecun, Y., Bottou, L., Bengio, Y., Haffner, P., “Gradient-
based learning applied to document recognition”, 
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 
1998. 

[8] Redmon, J., Divvala, S., Girshick, R., Farhadi, A., “You 
Only Look Once Unified, Real-time Object Detection”, 
IEEE Conference on Computer Vision and Pattern 
Recognition. 2016. 

[9] Moubarak, P., Ben-Tzvi, P., "A Tristate Rigid Reversible 
and Non-Back-Drivable Active Docking Mechanism for 
Modular Robotics," IEEE/ASME Transactions on 
Mechatronics, Vol. 19, Issue 3, pp. 840-851, June 2014. 

[10] Moubarak, P. M., and Ben-Tzvi, P.,” On the Dual-Rod 
Slider Rocker Mechanism and its applications to Tristate 
Rigid Active Docking,” Journal of Mechanisms and 
Robotics, Vol. 5, Issue 1, pp. 011010:1-10, Feb. 2013. 

[11] Moubarak, P. M., Alvarez, E. J., and Ben-Tzvi, P.,” 
Reconfiguring a Modular Robot into a Humanoid 
Formation: A Multi-Body Dynamic Perspective On Motion 
Scheduling for Modules and Their Assemblies”, Proc. of 
2013 IEEE Int. Conf. on Autom. Sci. and Eng., Madison, 
Wisconsin, Aug. 17-21, 2013.  

[12] Kumar, P., Saab, W., Ben-Tzvi, P., “Design of a Multi-
Directional Hybrid-Locomotion Modular Robot with 
Feedforward Stability Control”, Proceedings of the 2017 
ASME IDETC/CIE, 41st Mechanisms & Robotics 
Conference, Ohio, Aug. 6-9, 2017. 

[13] Saab, W., Ben-Tzvi, P.,” A Genderless Coupling 
Mechanism with 6-DOF Misalignment Capability for 
Modular Self-Reconfigurable Robots”, Journal of 
Mechanisms and Robotics, Transactions of the ASME, 
Vol. 8, Issue 6, pp. 061014:1-9, Dec. 2016. 

[14] Saab, W., Racioppo, P., Ben-Tzvi, P., “A review if 
coupling mechanism design for modular reconfigurable 
robots”, Robotica Journal, October 2018. 
doi:10.1017/S0263574718001157. 

[15] Sebastian, B., Ben-Tzvi, P., “Physics-Based Path Planning 
for Autonomous Tracked Vehicles in Challenging 
Terrain”, Journal of Intelligent and Robotic Systems, 2018. 
doi: 10.1007/s10846-018-0851-3. 

[16] Sebastian, B., Ben-Tzvi, P., “Active disturbance rejection 
control for handling slip in tracked vehicle locomotion”, 
Journal of Mechanisms and Robotics, Dec. 2018. 
doi:10.1115/1.4042347. 

[17] Pozyx sensors for positioning and motion information. 
Available. [Online]. https://www.pozyx.io/ 

[18] Sohal, S. S., Saab, W., Ben-Tzvi, P., “Improved Alignment 
Estimation for Autonomous Docking in Mobile Robots”, 
Proc. of the 2018 ASME IDETC/CIE, 42nd Mechanisms 
and Robotics Conference, Quebec City, Canada, Aug. 26-
29, 2018.  

[19] Corke, P., “MATLAB toolboxes: robotics and vision for 
students and teachers”, IEEE Robotics and Automation 
Magazine, vol. 14, Issue 4, pp. 16-17, 2007. 

Copyright © 2020 ASMEV010T10A051-8

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/ID

ETC
-C

IE/proceedings-pdf/ID
ETC

-C
IE2020/83990/V010T10A051/6586943/v010t10a051-detc2020-22181.pdf by Virginia Polytechnic Institute and State U

niversity user on 21 M
ay 2021




