
Wenda Xu
Robotics and Mechatronics Laboratory,
Department of Mechanical Engineering,

Virginia Tech,
Blacksburg, VA 24061
e-mail: wenda@vt.edu

Yunfei Guo
Robotics and Mechatronics Laboratory,
Department of Electrical and Computer

Engineering,
Virginia Tech,

Blacksburg, VA 24061
e-mail: yunfei96@vt.edu

Yujiong Liu
Robotics and Mechatronics Laboratory,
Department of Mechanical Engineering,

Virginia Tech,
Blacksburg, VA 24061

e-mail: yjliu@vt.edu

Pinhas Ben-Tzvi1

Robotics and Mechatronics Laboratory,
Department of Mechanical Engineering,

Virginia Tech,
Blacksburg, VA 24061
e-mail: bentzvi@vt.edu

Development of a Novel Compact
Robotic Exoskeleton Glove With
Reinforcement Learning Control
This paper presents the design, optimization, control, and experimental evaluation of a
novel compact exoskeleton glove aiming to assist patients with brachial plexus injuries in
grasping daily used objects. The finger mechanism is based on a rigid coupling hybrid
mechanism concept, which utilizes a serially connected rack-and-pinion mechanism and
an offset slider-crank mechanism to couple the motions of different finger joints. The
glove dimensions are synthesized based on the natural grasping motion of human hands.
To better control the glove and enhance the grasping capabilities, a simulation environment
was developed and reinforcement learning techniques were applied. This learning-based
control trained an agent to perform different grasp types with appropriate force. The
trained agent was then applied in real-world experiments with the developed exoskeleton
glove. The results validated the effectiveness of the mechanical design and the real-time
self-adjustable control policy, which demonstrated the glove’s functionality and capability
to grasp various objects relevant to activities of daily living. [DOI: 10.1115/1.4064283]
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1 Introduction
Brachial plexus injury (BPI) is a severe peripheral nerve injury

affecting upper limbs and causing pain, weakness, and numbness
in the arm and hand [1]. It is mostly caused by vehicle accidents,
athletic injuries, and gunshot wounds. Patients who suffer from
BPI will loss feeling and control ability in shoulder, arm, and
hand. Previous studies have proven that the surgical options can
be used to recover the functionalities of shoulder and arm. But
the improvement on hand is marginal due to its complexity [2].
These limitations in human hand functionality severely impact
patients’ daily life and increase the assistance requirements for
activities of daily living (ADLs).
Numerous research groups are dedicated to developing assistive

devices to restore the lost functions and mobility in individuals with
various neuromuscular disorders. Advanced technologies, such as
exoskeleton devices, have paved the way for individuals with dis-
abilities or diseases to a more independent live through the use of
autonomous devices [3]. Considering the requirements of human–
robot interaction, the design requirements for hand exoskeleton
devices, specifically tailored for ADLs, can be summarized as

follows [4]. First, the exoskeleton device should feature a
compact design to minimize collisions with the environment. This
compactness also contributes to a lightweight and comfortable
structure. Second, the mechanism should be simple enough to
enhance the reliability and safety while reducing the size and cost
of the exoskeleton devices. Finally, the ergonomics of the human
hand exoskeleton, including the remote center of motion (RCM)
and human motion imitation, are crucial for increasing comfort
and providing natural hand movements.
Typically, the hand exoskeleton mechanisms can be categorized

into three types based on their actuation methods: pneumatic/
hydraulic mechanism (mostly used for soft robotics [5–8]),
Tendon/Bowden-driven mechanism [9,10], and linkage-driven
mechanism [11–14]. Soft robotic gloves are effective in providing
compliance, enhancing safety by absorbing impacts, and offering
good wearability. However, they usually require thick inflatable
segments attached to each finger for force generation. Moreover,
designing precise trajectories is challenging due to the poor repeat-
ability of elastic element deformation. The additional air compres-
sor package also reduces the device portability. Tendon/
Bowden-driven mechanisms are suitable for non-portable hand exo-
skeletons as they allow motors to be placed remotely. However,
motion transmission in these mechanisms is prone to introduce fric-
tion, backlash, and to have a limited maximum force due to sheathes
exerting forces during movement. In comparison, linkage-driven
methods provide a simple and direct approach to transfer force
and motion from the actuators to the fingertips. The motors can
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be integrated into the exoskeleton to enhance portability. However,
a delicate design is necessary to minimize its size while considering
ergonomics.
Due to the various tasks involved in grasping different objects

with different shapes and weights, simple force control algorithms
may not be sufficient to successfully complete these tasks. Elaborate
grasping force control may be necessary for precise manipulation in
real-world interactions, which relies on robust sensing capabilities.
However, according to a survey, only less than half of the surveyed
studies demonstrated a force control implementation in hand exo-
skeleton systems [15]. This indicates the need for further develop-
ment and research in this area to improve the effectiveness and
applicability of force control algorithms in exoskeleton devices.
To enhance the overall performance of robotic gloves in terms of

wearability, comfort, and portability, we developed a novel exo-
skeleton glove in this paper. This design addresses the limitations
of existing wearable devices while incorporating the general
requirements of hand exoskeleton devices. Figure 1 illustrates a
proof-of-concept prototype of this proposed exoskeleton glove.
In the new glove design, each finger linkage mechanism is actu-

ated by a customized linear actuator. The motion of each finger exo-
skeleton is coupled by a rigid coupling hybrid mechanism (RCHM)
which helps to reduce the number of degrees-of-freedom (DOF) and
improve the overall functionality. To ensure a natural and comfort-
able user experience, the glove mechanism dimensions are carefully
synthesized to imitate the natural motion of human hands. This
approach improves wearability and comfortability, allowing users
to perform various ADLs easily. Furthermore, the compact and low-
profile design of the exoskeleton glove enhances its portability,
allowing users to wear it comfortably in different environments.
To enhance the glove’s versatility, a reinforcement learning-based
force control policy is implemented. This enables the glove to effec-
tively solve different grasping tasks by autonomously adjusting the
applied forces.
The main contributions of this work can be summarized as

follows. First, we have expanded the novel low-profile mechanism
[16] that exhibits mechanical stability and robustness, initially
developed for two fingers, to encompass the entire hand. Second,
we successfully developed a proof-of-concept prototype based on
the proposed mechanism and the synthesized results. Third, we
developed a simulation environment for the new glove using SIMS-

CAPE and trained a reinforcement learning agent using a deep deter-
ministic policy gradient (DDPG) to generate a force control policy
which is capable of handling different grasp types and objects.
Finally, we conducted comprehensive experiments to evaluate the
effectiveness of our design and proposed control policy by

calibrating force for each actuator and bridging the gap between
the simulation environment and the real-world.
Compared to other hand exoskeletons, our new exoskeleton

glove exhibits several unique characteristics: (1) it utilizes a
linkage-driven mechanism, which ensures mechanical stability
and robustness, (2) the finger mechanism is based on the RCHM
concept, resulting in a compact and low-profile design, (3) the exo-
skeleton glove is synthesized to closely imitate the actual motion of
the human hand, enabling better grasping performance for ADLs for
patients, and (4) the glove implements a reinforcement learning-
based force control policy that generates appropriate forces in real-
time for different grasp tasks.
The remainder of this paper is organized as follows. Section 2

presents the mechanism and mechanical design of the exoskeleton
glove, including the kinematics model and the design variables.
Section 3 discusses the electrical design and the low-level control
method. Section 4 provides the simulation environment details
and an overview of the reinforcement learning method that is
used to generate the appropriate force control policy. Section 5
details the experiments conducted on healthy subjects. Finally,
Sec. 6 concludes the paper, summarizes the findings, and discusses
potential future directions.

2 Mechanism and Mechanical Design
This section explores the design principles of the finger mecha-

nism and outlines the process of optimizing the motion trajectories
for each finger. Additionally, we will present the final configura-
tions of the prototype that were implemented. It is worth noting
that the total weight of the entire glove system, excluding electron-
ics and batteries, amounts to 304 g.

2.1 Mechanism Design. The design of the proposed exoskel-
eton glove incorporates the concept of coupling motion between
different phalanges within each finger during grasping. Building
upon previous research findings [17–19], which proves that reduc-
ing the number of DOFs in the hand is sufficient for performing
most activities of daily living, three DOFs of each finger (excluding
abduction–adduction) is simplified into a single-DOF. By doing so,
we reduce the number of required actuators, resulting in a more
compact and lightweight design.
The simplified finger mechanism of the exoskeleton glove is

based on the one DOF case of the rigid coupling hybrid mechanism
concept [20]. The motion transmission is achieved by coupling the
motion of each link with its adjacent link, allowing the motion of
the current link to be driven by its neighboring links rather than
the actuator itself. To implement the RCHM, two fundamental com-
ponents are required: a parallel mechanism (PM) that determines the
basic mobility of the mechanism, and a rigid coupling mechanism
that couples the motions of the adjacent PMs. The rigid coupling
mechanism can be realized in various forms, such as a
rack-and-pinion mechanism or a four-bar mechanism, depending
on the specific design requirements.
Each finger exoskeleton comprises three links according to

human hand anatomy: a distal link, a middle link, and a proximal
link. Additionally, three relative joints are included: a distal inter-
phalangeal joint (DIP), a proximal interphalangeal joint (PIP), and
a metacarpophalangeal joint (MCP). The thumb digit exoskeleton
follows a similar configuration, but lack of the middle link and
DIP joint.
To ensure a proper fit on the patient’s hand, each link of the exo-

skeleton finger is aligned with the corresponding phalanx, and each
joint corresponds to the respective joint on the patient’s hand. The
finger mechanism utilizes a combination of offset slider-crank
mechanisms and rack-and-pinion mechanisms to connect different
links. Referring to Fig. 2, the principles of the finger mechanism
are as follows:

Fig. 1 A proof-of-concept prototype of the new exoskeleton
glove

081016-2 / Vol. 16, AUGUST 2024 Transactions of the ASME



(1) A customized linear actuator consists of the motor and lead-
screw is actuated by the DC motor mounted at the end. The
leadscrew nut is connected to the proximal link through a
connector. This connection forms the first offset slider-crank
mechanism around the MCP joint, which converts the linear
motion generated by the linear actuator into a rotary motion
of the MCP joint. The rotary motion of the MCP joint drives
the proximal link accordingly.

(2) Furthermore, the housing of the linear actuator is connected
to the sliding rack using another connector. This connection
forms the second offset slider-crank mechanism around the
MCP joint, which converts the rotary motion of the MCP
joint into the linear motion of the rack. Thus, the motion orig-
inating from the linear actuator is transmitted to the linear
motion of the rack on the proximal link, but with a different
direction due to the rotation of the MCP joint.

(3) After the transmission of motion through the second offset
slider-crank mechanism, the pinion-rack mechanism is
employed to reverse the direction of motion and establish a
connection between the second offset slider-crank mecha-
nism around the MCP joint and the first offset slider-crank
mechanism around the PIP joint. By such way, the motion
of the MCP joint and the motion of PIP joint are coupled.

(4) The same process is repeated to transmit motion from the PIP
joint to the DIP joint. Through these successive connections
of the pinion-rack mechanisms and offset slider-crank mech-
anism, the motion of all three different joints (MCP, PIP, and
DIP) on the same exoskeleton finger is coupled.

It is important to note that the MCP joint on the exoskeleton
finger is virtual and replaced by a RCM mechanism to avoid inter-
ference with the patient’s hand.
The first offset slider-crank mechanism, represented by the red

arrow in Fig. 2, is called the “driving” mechanism. It generates
forward motion and drives the motion of the MCP joint in the
finger mechanism. Conversely, the second offset slider-crank mech-
anism, represented by the blue arrow, is called the “measuring”
mechanism. It generates backward motion and its motion depends
on the driving mechanism, effectively measuring the output
motion of the MCP joint. The rotation angle of the MCP joint,

produced by the driving mechanism, is measured by the measuring
mechanism and presented as the displacement of the rack.
A similar arrangement exists around the PIP joint, where another

pair of driving and measuring mechanisms are present. The
rack-and-pinion mechanism connects the measuring mechanism
of the MCP joint to the driving mechanism of the PIP joint, resulting
in the coupling motion between the MCP joint and the PIP joint.
The achievement of proposed sequential transmission of motion
from the linear actuator to the end effector (distal link), enables
coordinated and synchronized finger joints’ movements in the exo-
skeleton glove.
It is worth noting that there is no measuring mechanism around

the DIP joint since it is already connected to the last link, and its
motion is directly coupled to the previous joint.
Additionally, a passive abduction and adduction mechanism with

mechanical limits is incorporated. This mechanism introduces a rev-
olute joint at the base of the actuator housing, connecting the finger
linkage and the hand base. It enables comfortable movement for the
patient while ensuring appropriate alignment.
This unique design allows us to make the exoskeleton finger

mechanism as thin as possible and attach the whole mechanism to
the top of each finger to avoid interference between the exoskeleton
glove and the human hand, improving the wearability, comfortabil-
ity, and portability of the glove.

2.2 Kinematic Analysis. Hand kinematics includes the four-
finger kinematic chains and the thumb kinematic chains. Since
the motion of different finger joints has similar coupling motion,
their kinematics are summarized into a single formulation. The
spatial kinematic chain from base to thumb Metacarpal is treated
separately. One finger and thumb are used to simplify the model
for illustration, as shown in Fig. 3.
The proposed exoskeleton glove incorporates five distinct kine-

matic chains to accommodate different digits. Among them, the
four fingers exhibit similar coupled planar motion, allowing their
kinematics to be represented by a unified formulation. On the
other hand, the kinematic chain of the thumb takes both the
coupled planar motion and the spatial motion around the Carpo–
Metacarpa (CMC) joint into account. By considering these varia-
tions, the exoskeleton glove achieves comprehensive control over
the hand movements, accommodating the unique kinematics of
each digit [16,21].
For the finger linkage kinematic analysis, the forward kinematic

chain of the current finger c is given by Eq. (1)

px,c + ipy,c = l p,ce
iθmcp,c + lm,ce

i(θmcp,c+θ pip,c)

+ ld,ce
i(θmcp,c+θ pip,c+θdip,c)

(1)

where c∈ {index, middle, ring, little} represents the current finger,
px,c, py,c are the x and y coordinates of the exoskeleton fingertip
position in the finger motion plane. θmcp,c, θdip,c, and θpip,c are the
rotating angles of the MCP joint, the PIP joint, and the DIP joint
on the current exoskeleton finger, respectively. lp,c, lm,c, and ld,c
are the lengths of the proximal link, the middle link, and the
distal link on the current exoskeleton finger, respectively.
Based on the mechanism design that is discussed in Sec. 2, the

following relationship can be obtained:

Ac,jnt,i =
����������������
B2
c,jnt,i − C2

c,jnt,i

√
+ Dc,jnt,i − Ec,jnt,i (2)

where

Ac,jnt,i = (lc,jnt,i − dc,jnt) cos αc,jnt,i (3)

Bc,jnt,i = l2c,jnt,i cos αc,jnt,i (4)

Cc,jnt,i = h2c,jnt(cos αc,jnt,i − cos (αc,jnt,i + θc,jnt)) (5)

Fig. 2 The overview of the proposed mechanism design. Two
different mechanisms on the exoskeleton finger are added: a
rack-and-pinion mechanism for motion reversing and an offset
slider-crank mechanism for motion conversion. The arrow
pointed to the left represents the driving chain which drives the
next connected linkage. The arrow pointed to the right repre-
sents the measuring chain which measures the movement of
the driving chain.
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Dc,jnt,i = hc,jnt sin αc,jnt,i (6)

Ec,jnt,i = hc,jnt cos (αc,jnt,i + θc,jnt) (7)

and jnt∈ {mcp, pip, dip}, i∈ {1, 2}. Subscript i= 1 refers to the
driving chain and subscript i= 2 refers to the measuring chain. l
is the connector length, h is the distance between the joint and the
middle plane of the rack, and α is the angle of the crank.
The kinematics of the human thumb involve three phalanges: the

proximal phalanx, the distal phalanx, and the metacarpal phalanx.
The motion of the proximal and distal phalanges can be captured
using the finger linkage kinematics described earlier, as they
exhibit planar motion.
However, the metacarpal phalanx is connected to the Carpus

through the CMC joint, which provides two DOF. To replicate
the functionalities of the CMC joint in the exoskeleton, it is
divided into two independent revolute joints, denoted as C1 and
C2 [16] as shown in Fig. 3. It is important to note that the second
revolute joint (C2) is designed to be passive, ensuring consistency
with other finger exoskeletons.
The CMC joint (C0) of the thumb is chosen as the origin of the

global coordinate system. Each link frame, denoted as
∑

Cj

where 0≤ j≤ 3, is defined at the axis of joint j, with zj coinciding
with the joint axis and xj pointing toward the next joint. The
forward kinematics from the CMC joint on the hand to the MCP
joint on the thumb can be expressed as follows:

RCj = RCj−1Rz(βCj ,z)Ry(βCj ,y)Rx(βCj ,x)Rz(θCj ) (8)

pCj
= RCj−1pCj−1 ,Cj

+ pCj−1
(9)

where RCj denotes the orientation of the frame
∑

Cj, Rx(·), Ry(·),
and Rz(·) denote the principle rotation matrix functions with
respect to the corresponding axis, βCj

= [βCj ,x βCj ,y βCj ,z]
T denotes

the vector of rotation angles with respect to the corresponding

axis, θCj denotes the rotation angle of the joint Cj, pCj
denotes the

Cj position, pCj−1 ,Cj
denotes the vector from Cj−1 to Cj. For the

initial conditions, RC0 is the identity matrix, θC0 is zero, pC0
and

βC0
are zero vectors.

2.3 Kinematic Synthesis. The finger mechanism requires
proper alignment of joint axis on the exoskeleton and the joint
axis on the human finger. However, due to the significant size
and shape variations among individuals, an optimization process
is conducted based on the finger dimensions provided by the
author, as indicated in Table 1. It is worth mentioning that the
thumb does not have a middle link, and the parameter lc for four
fingers are ignored in the optimization process, as it has minimal
impact on the finger motion.
The design of the exoskeleton glove aims to replicate the natural

grasping motion of the human hand. To achieve this, the design var-
iables of the exoskeleton glove are optimized based on the UNIPI
dataset [22], which provides joint trajectories of the fingers during
grasping motions. Specifically, the finger joint data from the No.
1 subject while grasping the No. 8 object (grasping the tape with
five digits) are selected, as they contain long trajectories of joint
motion, thus expanding the exoskeleton glove’s workspace.
Since the selected trajectories cover both grasping and releasing

motions and contain thousands of data points, preprocessing is

Fig. 3 Kinematic model of the exoskeleton glove mechanism with c-th finger and thumb.
Detail view C shows the kinematic model around the PIP joint on the finger c for illustration.
(a) CAD model of the c-th finger and the thumb and (b) kinematic chain representation of
the c-th finger and the thumb.

Table 1 Finger dimensions

Name lc (mm) lp (mm) lm (mm) ld (mm)

Thumb 52.0 36.0 — 34.0
Index — 50.0 27.2 26.4
Middle — 57.0 35.4 24.2
Ring — 55.1 33.0 24.6
Little — 44.7 25.4 24.0
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performed to extract only the grasping motion. From the grasping
data, four equally distributed positions along the trajectory are
chosen as landmarks. Each landmark is defined by 15 joint angles
(three distinct joints on each digit), which characterize the hand’s
posture.
The objective function is formulated as the weighted sum of the

root mean squared error (RMSE) between the joint angles of the
landmarks and the corresponding joint angles of the exoskeleton
fingers. The RMSE is calculated for each joint angle, resulting in
a vector e ∈ R60×1. The weights wk ∈ R1×15 are assigned to each

joint angle of the kth landmark, and they reflect the importance of
each landmark in the optimization. The objective function Z is
defined as

Z = [w1 w2 w3 w4]e (10)

The selection of weights for the MCP, PIP, and DIP joints considers
the different range of motion of each joint and its relationship with
the adjacent joints. This allows the optimization to consider the rel-
ative importance of each joint angle in achieving a more accurate
replication of the human motion trajectory [23]

0 deg ≤ θmcp ≤ 90 deg (11)

0 deg ≤ θ pip ≤ 110 deg (12)

0 deg ≤ θdip ≤ 90 deg (13)

For the finger linkage mechanism, additional nonlinear inequality
constraints are introduced to incorporate the rack-and-pinion mech-
anisms. These constraints ensure that the motion of the rack and the
rotation of the pinion are properly synchronized. The specific form
of these constraints depends on the geometric characteristics and
design parameters of the rack-and-pinion mechanism used in the
exoskeleton glove.

2dpip ≤ l p − hmcp cos (αmcp,1) − hpip cos (α pip,2) (14)

2ddip ≤ lm − hpip cos(α pip,1) − hdip cos (αdip,2) (15)

hpip ≤ hmcp (16)

hdip ≤ hpip (17)

The five digits are optimized together to achieve a better perfor-
mance. The optimization problem is solved by the MATLAB function
fmincon with the “interior-point” algorithm. The optimized design
variables are collected in Table 2.

Table 2 Optimized design variables

Index finger Middle finger

Variable Value Variable Value Variable Value Variable Value

lmcp,1 13.0mm lmcp,2 13.9mm lmcp,1 20.0mm lmcp,2 19.3mm
lpip,1 15.0mm lpip,2 15.6mm lpip,1 14.3mm lpip,2 21.7mm
ldip,1 8.2mm hmcp 16.7mm ldip,1 12.0mm hmcp 14.3mm
hpip 10.0mm hdip 10.0mm hpip 10.0mm hdip 10.0mm
αmcp,1 17.1 deg αmcp,2 22.3 deg αmcp,1 17.8 deg αmcp,2 17.2 deg
αpip,1 24.6 deg αpip,2 30.0 deg αpip,1 29.4 deg αpip,2 30.0 deg
αdip,1 45.0 deg αdip,1 47.1 deg

Ring finger Little finger
lmcp,1 17.2mm lmcp,2 17.8mm lmcp,1 13.4mm lmcp,2 13.1mm
lpip,1 12.2mm lpip,2 19.5mm lpip,1 12.2mm lpip,2 13.0mm
ldip,1 12.2mm hmcp 16.0mm ldip,1 11.2mm hmcp 16.0mm
hpip 10.0mm hdip 10.0mm hpip 10.0mm hdip 10.0mm
αmcp,1 18.0 deg αmcp,2 19.7 deg αmcp,1 17.8 deg αmcp,2 17.2 deg
αpip,1 25.8 deg αpip,2 30.0 deg αpip,1 22.1 deg αpip,2 30.0 deg
αdip,1 45.0 deg αdip,1 45.0 deg

Thumb
lmcp,1 14.9mm lmcp,2 20mm ldip,1 15.9mm hmcp 16.1mm
hdip 10.0mm αmcp,1 17.2 deg αmcp,2 10.0 deg αdip,1 30.0 deg
pC0 ,C1 ,x −14.8 mm βC1 ,x −154.5 deg pC0 ,C1 ,y 10.1mm βC1 ,y −170.2 deg
pC0 ,C1 ,z 16.3mm βC1 ,z −128.8 deg pC1 ,C2 ,x 2.9mm βC1 ,x 115.7 deg
pC1 ,C2 ,y −24.0 mm βC1 ,y 170.4 deg pC1 ,C2 ,z −18.6 mm βC1 ,z 38.6 deg
lC2 ,C3 40.0mm

Fig. 4 (a) Electronics block diagram and (b) rendered exoskele-
ton glove with electronics
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3 Electronics and Control
Figure 4 illustrates the electronics block diagram of the system.

The electronics system is divided into three parts.
The first part comprises power supply units that provide 3V, 5V,

and 12V voltage output.
The second part is the control board, consists of a Teensy 4.1

microcontroller and seven DVR8801 motor drivers. The onboard
Teensy 4.1 microcontroller handles sensor readings and performs
various low-level control tasks, such as motor current control,
motor force control, and motor proportional–integral–derivative
(PID) position control. To minimize sensor reading latency and
enable parallel computing, a real-time system is employed. The
microcontroller communicates with a desktop computer to
perform deep reinforcement learning (DRL).
Third, the exoskeleton glove uses six dual-shaft 12V 1000:1

Pololu metal gear motors to produce sufficient power and torque
to generate motion in the proposed exoskeleton glove (one for
each finger and one for the thumb thenar). Each motor is paired
with a DVR-8801 motor driver and 12-CPR magnetic encoders.
The electrical current consumption of the motor can be measured
using the DVR-8801 motor driver. We use a fifth order low-pass
Butterworth filter with a 2Hz cutoff frequency to filter the measured
current. Two Interlink FSR-402 force sensitive resistors (FSRs) are
placed on wearable finger sleeves on the thumb and index finger.
Both FSRs are connected to a 3.3V voltage source with a 100 kΩ

pull-down resistor, which can measure the contact force from 0N
to 4N using a 3V, 12-bit ADC bus.

3.1 Current–Force Conversion. The proposed exoskeleton
glove does not feature a force sensor on all fingers; therefore, it is
challenging to control force. We controlled the motor force
output indirectly by controlling the electrical current consumption
of the motor. The conversion of current to force is discussed in
this subsection.
To perform the linear actuator current–force calibration, we

placed a load cell to measure the force exerted by the last linkage
of the middle finger mechanism (see Fig. 5(a)). Force is measured
by the load cell in the perpendicular direction to the ground. The
measured force on the load cell can be modeled using Eq. (18)

Flc = Fm · R(p) · cos (θ) (18)

where Flc denotes the force measured by load cell, Fm denotes the
force output by linear actuator, R(p) denotes the actuator to finger-
tip linkage force transformation ratio as a function of actuator posi-
tion, and θ denotes the angle between load cell and fingertip linkage.
The actuator can be calibrated by mapping the current consump-

tion I to the actuator output force Fm. I can be measured directly by
the motor controller. Fm can be calculated using Eq. (18), where
actuator to fingertip force transformation ratio is a function of
the actuator position shown in Fig. 5(b). The encoder measures
the actuator position p, and θ is measured by hand. We collected
135 force–current data pairs at three angles to perform the fitting
and use 90 pairs to validate the result. The fitting result is shown
in Fig. 5(c). The calibration achieved an average force difference
of 21.15% mean absolute percentage error (MAPE) at the fingertip
linkage. The actuator can output around 13.5N and 1.6–2.76N to
fingertip linkage based on different linkage angles.
To perform rotatory actuator current–force calibration, we placed

a load cell to measure the force exerted by the last linkage of the
thumb and thumb thenar mechanism (see Fig. 6(a)). Force is mea-
sured by the load cell in the perpendicular direction to the ground.

Fig. 5 Current–force conversion experiment setup and result:
(a) current–force conversion experiment setup, (b) actuator to
fingertip linkage force transformation ratio as a function of actu-
ator position, and (c) actuator output force as a function of motor
current consumption

Fig. 6 Current to torque calibration for the rotatory actuator:
(a) current–torque conversion experiment setup and (b) actuator
output torque as a function of motor current consumption

081016-6 / Vol. 16, AUGUST 2024 Transactions of the ASME



The measured force on the load cell can be modeled using Eq. (19)

τt = Flc · cos (θ) · r (19)

where Flc is the force measured by load cell, τt represents the torque
output by rotatory actuator, θ represents the angle between load cell
plane and rotatory actuator rotational axis, and r represents rotatory
actuator leverage.
The actuator can be calibrated by mapping the current consump-

tion I to the actuator output force τt. I can be measured directly by
the motor controller. τt can be calculated using Eq. (19), where θ
and r are measured by hand. We collected 64 pairs of force–
current data at two angles to perform the fitting and used 48 pairs
to validate the result. The fitting result is shown in Fig. 6(b). The
calibration achieved an average torque difference of 10.25%
MAPE and the actuator can output around 37 N · cm torque.

3.2 Force-Sensitive Resistor Calibration. The force-
sensitive resistors are placed on the index finger pad and on the
inner side of the thumb finger (measure the force output from the
thumb). FSRs are used to assist in force sensing, contact detection,
and slip detection. The maximum force output of the index finger-
tip linkage is 2.76N, and the maximum force output of the thumb
rotatory actuator is 4.07N. Therefore, 25 g, 50 g, 100 g, and 200 g
weights are used to calibrate FSRs. Each weight is placed on the
FSR five times. The average ADC reading has been recorded for
each weight. The calibration curve is shown in Fig. 7.

3.2.1 Controller Software Architecture. This subsection pro-
vides an overview of the low-level and high-level control structures.
The low-level control is executed on the Teensy 4.1 microcontrol-
ler, while the high-level control runs on a computer. The compre-
hensive software architecture is illustrated in Fig. 8.
The primary functions of the low-level controller encompass

actuator control, sensor signal filtering and processing, and commu-
nication. Actuator control is governed by two PID controllers,
selected based on whether the fingertip needs to generate force on
the target object for the specific grasp type. The PID current control-
ler is utilized to generate force on the fingertips, while the PID posi-
tion controller manages the closing motion without generating any
contact force on the target object. For instance, during a cylinder
grasp, all six actuators employ force control, utilizing the PID
current controller for actuation. In contrast, for a tip grasp, where
the middle, ring, and pinky fingers maintain fixed positions, PID
position control is applied to these three fingers’ actuators.
Sensor signal filtering involves a bandpass filter that collects

motor current consumption data at a rate of 100Hz and FSR read-
ings at 10Hz. The motor current consumption data serve as feed-
back for the PID current controller at 100Hz and are then
converted into actuator force readings at a rate of 10Hz. Simulta-
neously, the FSR readings are converted into fingertip force mea-
surements, also at 10Hz. These converted values, including
actuator force, fingertip force, and actuator position, are transmitted
to the high-level controller at a rate of 10Hz.

The high-level controller operates a DDPG deep reinforcement
learning agent, as elaborated in Sec. 4. This agent takes observa-
tions from the low-level controller and sends actions back to the
low-level controller to control the exoskeleton glove’s operations
at a rate of 10Hz.

4 Reinforcement Learning Control Policy
The current research on exoskeleton gloves primarily focuses on

mechanism design, with limited attention given to the development
of force control algorithms [24]. Many existing control policies are
designed to demonstrate the feasibility of the mechanisms but lack
the capability to adjust forces during grasping and adapt to different
grasp types [15]. Recognizing these shortcomings, we propose an
adaptive force control method based on reinforcement learning.
This approach aims to enable real-time force adjustment during
grasping based on different target objects. By employing this
method, we seek to enhance the exoskeleton glove’s ability to
plan forces according to the specific requirements of different grasp-
ing tasks.

4.1 Simulation Environment. Simulation plays a crucial role
in verifying the functionality of both the hardware and control
system, as well as accelerating the design process for complex
control algorithms. The proposed exoskeleton glove simulation
was conducted using MATLAB SIMSCAPE R2022b. Comparing to
other simulation software such as MUJOCO, V-REP, and GAZEBO, SIMS-

CAPE offers a more stable solution for simulating coupling mecha-
nisms and parallel robots. It also provides an easy way to import
complex 3D models, establish connections between the simulation
environment and agent, and implement real-time control based on
trained agents.
The simulation can be divided into three main parts: (1) selection

of simulation parameters, (2) control of simulated actuators, and (3)
analysis of simulation results.

Fig. 7 Force calibration for FSR-402 force-sensitive resistor

Fig. 8 Exoskeleton glove system software architecture. Hard-
ware and peripherals are marked in yellow. Controllers are
marked in green. The microcontroller sends sensor data to the
computer at a rate of 10Hz and receives force or position
command from the computer at the same speed.
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4.1.1 Simulation Parameter Selection. To ensure the proper
functioning of a simulation, three sets of parameters are essential.
The first set of parameters in our simulation involved modeling

the physical characteristics of the simulated objects, which included
their mass, center of mass, and moment of inertia. To ensure accu-
racy and consistency, we automatically generated these parameters
for the exoskeleton glove by assigning appropriate material proper-
ties in SOLIDWORKS.
For the target objects, their shape and weight were subjected to

variations within a range of ±15% of their original size and
weight (Table 3). This variation was introduced to create a
diverse set of objects with slightly different properties, simulating
real-world scenarios where objects may vary in size and weight.
The second set of parameters set the internal mechanisms of the

simulated actuators. There are seven actuators on the physical exo-
skeleton glove: one for each digit, one for the thumb CMC joint,
and one for the wrist (mimic the human wrist motion in the simula-
tion environment only). To replicate the abduction and adduction
motions of human fingers, passive revolute joints were used
between the finger mechanism and the exoskeleton glove base. In
the simulation, these passive joints are set with high stiffness and
constraints to reduce computational costs. This eliminates the
need for calculating contact forces between different fingers. There-
fore, each finger comprises two actuators: one prismatic joint for
controlling linear motion and one revolute joint for simulating
abduction and adduction motions. Additionally, there is one more
actuator for the rotary motion of the thumb thenar. To represent a
motor in the physical hardware, a spring-damper system is utilized
as the internal mechanism for these simulated actuators. The prismatic
joint’s spring-damper system has a spring stiffness of 0 N/m, a damping
ratio of 1300 N/(m/s). The thumb rotatory joint has a spring stiffness of
0 (N ·m)/deg and a damping ratio of 0.001 N ·m/(deg/s). These values
were determined through trial and error to match the hardware
behavior.
The third set of parameters modeled the contact forces, specifi-

cally in the contact between the finger and the target object, with
the aim of achieving accurate simulation result. These contact
force parameters include stiffness, damping ratio, static friction,
and dynamic friction. These values were obtained from previous
research [25].

4.1.2 Simulated Actuator Control. Specifically, for the revo-
lute joints responsible for simulating the abduction and adduction
motions, they are controlled by a built-in position controller,
which allows them to maintain specific positions depending on
the grasp type. On the other hand, the motor and leadscrew combi-
nation on each digit is simulated as one linear actuator, and the
linear actuators are controlled using a built-in force controller,
ensuring precise force control. Lastly, the thumb rotary actuator is
controlled using a built-in torque controller, enabling accurate
torque control. These control strategies effectively govern the beha-
vior of the simulated actuators in the system.

4.2 Control Policy. DRL techniques are particularly
well-suited for learning in high-dimensional continuous observation

and action spaces. Unlike traditional reinforcement learning
methods, DRL leverages deep neural networks to map states to
actions, enabling it to handle complex and continuous environments
without the need for a predefined or learned dynamics model [26].
Among the model-free DRL methods, two prominent approaches

are proximal policy optimization (PPO) [27] and DDPG [28]. PPO
is an on-policy method that directly optimizes the policy through
policy gradient techniques. It uses a trust region framework to
ensure stability during policy updates and incorporates a clipped
surrogate objective to avoid overly large policy changes.
However, since the PPO generates the actions based on the mean
and standard deviation, it is hard to enforce physical constraints
on the action space. This may require additional training steps to
ensure that the actions remain within the desired range. Moreover,
the environment is expensive to sample from, which increase the
training time.
On the other hand, DDPG belongs to the off-policy category,

where it learns a deterministic policy and utilizes an off-policy
experience replay buffer to improve sample efficiency and stability.
It employs an actor-critic architecture, where the actor network
learns the policy, and the critic network learns the value function.
This approach has been shown to the success in continuous
control tasks.
Our approach utilizes the DDPG algorithm to implement the

force controller for the proposed exoskeleton glove. The DDPG
agent is composed of an actor and a critic neural network to repre-
sent the policy and value functions, respectively. The actor network
takes actions based on its current policy and observations from the
environment, and the critic evaluates these actions based on the
observations and a reward. The simulation environment is com-
posed of a simulated exoskeleton model as mentioned before.

4.2.1 Reward Function. Designing a suitable reward function
is one of the key challenges in training the DRL agent. The
reward function must fulfill two simultaneous requirements. First,
the exoskeleton should exert minimal effort while successfully
lifting objects of various sizes and shapes. Second, the exoskele-
ton’s motion should closely adhere to the position limitations and
natural movements of the human hand. During a cylinder grasp, it
is important that all fingers extend until they make contact with
the target object. Additionally, it is desirable for the extension of
each finger to remain relatively consistent, without significant
variation.
In light of these considerations, the reward function can be

defined as follows:

r = c1Rs + c2Rh + c3Rf + c4Rfd + c5Rc (20)

where

Rs = −|he − ho| (21)

Rh =
3, if lift height ≥ 3mm

0, otherwise

{
(22)

Rf = −
∑
n

fn (23)

R fd = −
∑
n

|fdn | (24)

Rc =
Ts/Tf , if contact is detected

0, otherwise

{
(25)

he denotes the height of the exoskeleton glove, ho denotes the height
of the object, do signifies the lift distance of the target object, fn
denotes to the force generated by each finger actuator (where n∈
{thumb, index, middle, ring, little}), fd represents the first-order
derivative of the generated force, Ts denotes the sample time, and

Table 3 Objects used in grasp experiments

Name Weight (g) Grasp type

Glue Jar 200 Cylinder
Water Bottle 600 Cylinder
Orange 385 Sphere
Tennis Ball 69 Sphere
Pen 13 Tripod
Flat Box 102 Lateral
Paper Bowl 8 Lateral
Small Box 11 Tip
Heavy Box 211 Tip

081016-8 / Vol. 16, AUGUST 2024 Transactions of the ASME



Tf denotes the final simulation time of the environment.
The term Rs is utilized to penalize the agent in the condition of

slip occurrence, while Rh encourages the agent to successfully lift
the target object. To promote minimal effort in lifting, the term Rf

penalizes the force generated by each actuator. In order to
enhance consistency in the generated force, Rfd penalizes significant
variations in force. Additionally, Rt is incorporated to motivate the
agent to avoid premature termination.

4.2.2 Observation and Action Spaces. The observation space
determines the information available to the robot agent for policy
determination. At each time-step, the robot agent receives the fol-
lowing observations: {pn, qn, vn, ci}, where p denotes the position
of the linear actuator, q denotes the force generated from linear actu-
ator, v denotes the speed of the linear actuator, n∈ {thumb, index,
middle, ring, little}, c denotes the contact information on the
thumb and index fingertips, and i∈ {thumb, index}. These specific
observations were selected based on the measurable characteristics
of the exoskeleton glove in real-world scenarios. To ensure consis-
tency and compatibility, all observations are normalized within a
range of 0–1 before being inputted to the DDPG agent for training
and decision-making.
The action space in this exoskeleton glove is relatively straight-

forward, as it corresponds to the number of actuators present. The
deep neural network is trained to generate motor control commands,
and any error correction or adjustment is learned by the policy
network itself. To ensure that the output of the actor neural
network falls within the desired range, a sigmoid function is
applied to the last layer. This sigmoid function restricts the output
to the range of 0–1. By multiplying this bounded action with the
appropriate force factor, the output can be easily converted to the
desired force control range, which is from 0N to 13N for fingers
and from 0 N ·m to 0.35 N ·m for the thumb in this case.
It is important to note that in the real-world scenario, the lifting

motion is typically controlled by human. However, in the simula-
tion environment, a simplified approach is taken. When the
thumb and index finger make contact with the object, a constant
force of 25N is applied to simulate the lifting action. This approxima-
tion is used to mimic the lifting process observed in the real-world,
but it is important to note that this lifting motion is not generated
by the DDPG agent itself. Instead, it is triggered by the simulation
environment to provide a realistic interaction between the exoskel-
eton glove and the object being lifted.

4.2.3 Episode Termination Criteria in Deep Reinforcement
Learning Training. During the training process, we employ three
stopping criteria to terminate each episode’s simulation. First, if
the object has slipped by more than 3 cm, indicating a loss of
grip. Second, if the exoskeleton reaches an uncomfortable position,
such as when the distance between each finger actuator exceeds 4
mm. In such cases, the fingers are separated, resulting in an unnat-
ural gesture. Lastly, if the simulation time surpasses a predefined
limit, the episode is terminated.

5 Experiments
The training process was conducted on a machine equipped

with an AMD 3700X CPU @ 3.60 GHz, 32GB of memory, and
a Nvidia GeForce RTX 2080TI GPU. The entire training
process took approximately 60 h to complete. To showcase the
exoskeleton glove’s capabilities, a series of grasp experiments
were conducted both in a simulation environment and using the
physical exoskeleton glove. Nine target objects (listed in
Table 3) were selected for performing five different types of
grasp: cylinder grasp, sphere grasp, tripod grasp, lateral grasp,
and tip grasp. The experiments will be discussed from three per-
spectives: matching the simulation environment with the physical
experiment, simulation results, and physical experiments with the
exoskeleton glove hardware.

5.1 Bridging the Gap Between Simulation and Physical
Environment. In order to bridge the gap between the simulation
and physical environments, efforts were made to closely match
the observations and actions of the reinforcement learning agent
to minimize the disparities between the two environments. The
agent’s observations include actuator position, speed, force, and fin-
gertip force. The position and speed of the linear actuators can be
directly measured. The calibrated FSR force mentioned in Sec. 3
can be used as the fingertip force in the simulation environment.
Furthermore, the motor force calibrated using motor current con-
sumption, as described in Sec. 3, can be employed as the actuator
force in the simulation environment. The actuator force serves as
the control output from the simulation environment and is converted
to motor current using the calibration results outlined in Sec. 3.

5.2 Simulation Results. In order to validate the effectiveness
of the trained reinforcement learning agent in performing grasping
tasks, a series of grasp experiments were conducted in a simulation
environment. These experiments aimed to ensure that the agent
could achieve successful grasps with appropriate finger positions
and actuator forces. Figure 9 demonstrates the reinforcement learn-
ing agent successfully grasping the target objects in the simulation
environment.

5.3 Experiments in Physical Environment. The reinforce-
ment learning agent was successfully implemented and tested on
the physical exoskeleton glove using a healthy subject as a partici-
pant in the experiments. We chose to use a human subject instead of
a wooden hand for the experiment due to the wooden hand’s lack of
abduction and adduction motions. Moreover, the exoskeleton
glove’s rigid linkage construction prevents the subjects from exert-
ing force on the exoskeleton, making the use of a healthy subject
appropriate and justifiable. It is important to note that the agent’s
assistance is primarily focused on the grasping motion. During
the releasing motion, the exoskeleton glove will move at a

Fig. 9 Successful grasps of various objects in both simulation environment and real-world: (a) jar, (b) bottle, (c) small box,
(d) orange, (e) pen, and (f) flat box
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predefined constant speed to ensure patient safety within a short
timeframe.
In Fig. 10, we present the comparison between the measured

force and the planned force generated by the reinforcement learning
agent during the grasp experiments. It is worth mentioning that we
only display the curve corresponding to the digits or CMC joint that
is sensed with normal force for clarity and simplicity. During the
experiment, the other actuators move to their end position at full

speed. In the sphere grasp scenario, the actual object being
smaller than the trained object results in the pinky finger reaching
its position limit before generating the planned full force.
The results clearly demonstrate that the measured force closely

tracks the planned force generated by the reinforcement learning
agent, except when the control limit is reached. This close align-
ment between the planned and measured forces highlights the
agent’s exceptional ability to accurately control the exoskeleton’s

Fig. 10 The comparison between planned actuator force and measured actuator force when performing five different grasp
types. The subscript P denotes the planned force/torque (shown as dashed line) on the actuators based on the trained DDPG
agent. The subscript M denotes the calculated force/torque (shown as solid line) on the actuators based on the calibration
results. The left y-axis indicates the force generated by the linear actuators, while the right y-axis represents the torque generated
by the rotary actuator on the thumb. Five different grasp types were performed: (a) sphere grasp (pinky finger hit control limit),
(b) cylinder grasp, (c) tripod grasp, (d) lateral grasp, and (e) tip grasp.
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force output. The agent’s precise and reliable grasp control during
the experiments further emphasizes its potential for assisting indi-
viduals with hand disabilities in performing various daily living
tasks.

6 Conclusion And Future Work
In this paper, we presented a novel exoskeleton glove designed to

assist individuals with hand disabilities in their activities of daily
living. The glove features a low-profile, compact, and portable
design, making it suitable for everyday use. We introduced the
mechanism and mechanical design of the glove, focusing on achiev-
ing a better alignment with the natural motions of the human hand
through kinematic analysis and synthesis. To demonstrate the feasi-
bility of our design, we developed a proof-of-concept prototype and
implemented the necessary electronic components and low-level
control policy. Additionally, we used the deep reinforcement learn-
ing to provide real-time self-adjustable force control based on
different objects. To train our control policies, we created a simula-
tion environment that allowed us to simulate various scenarios and
train the agents effectively. Through several experiments, we show-
cased the capabilities of our exoskeleton glove in grasping daily
objects with dexterity.
However, we also identified some issues with the existing proto-

type. The limited DOFs of the glove restrict its ability to handle
more complex grasping tasks. Additionally, there is a noticeable
gap between the simulation environment and the real-world,
making it challenging to achieve a close match between them.
The predefined mass-spring-damper model in MATLAB lacks the
properties of actual linear actuators, leading to discrepancies
between the simulated and real-world behaviors. Additionally, the
reinforcement learning agent may not consistently provide a cons-
tant force during stable grasps. This variability is attributed to the
noise intentionally added to the agent’s actions during training to
promote exploration. While the noise is essential for learning and
adapting to different scenarios, it can lead to less consistent force
control during practical applications, especially for tasks requiring
precise and steady force application. Furthermore, finding
compact and elaborate force sensors for precise control remains a
challenge. Other electronics could be integrated on the forearm,
thereby increasing the whole system’s portability. Besides, the
incorporation with the hand for bimanual tasks can be highly ben-
eficial for enhancing patients’ daily activities. To move forward,
addressing these challenges will be the main focus of our future
work and we believe that this exoskeleton glove will provide valu-
able assistance to individuals with hand disabilities.
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[25] Park, J., Pažin, N., Friedman, J., Zatsiorsky, V. M., and Latash, M. L., 2014,
“Mechanical Properties of the Human Hand Digits: Age-Related Differences,”
Clin. Biomechan., 29(2), pp. 129–137.

[26] Di Febbo, D., Ambrosini, E., Pirotta, M., Rojas, E., Restelli, M., Pedrocchi, A. L.,
and Ferrante, S., 2018, “Does Reinforcement Learning Outperform PID in the

Control of FES-Induced Elbow Flex-Extension,” 2018 IEEE International
Symposium on Medical Measurements and Applications (MeMeA), Rome,
Italy, June 11–13, IEEE, pp. 1–6.

[27] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., 2017,
“Proximal Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347.

[28] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D., 2015, “Continuous Control With Deep Reinforcement
Learning,” arXiv preprint arXiv:1509.02971.

081016-12 / Vol. 16, AUGUST 2024 Transactions of the ASME

http://dx.doi.org/10.1016/j.clinbiomech.2013.11.022

	1  Introduction
	2  Mechanism and Mechanical Design
	2.1  Mechanism Design
	2.2  Kinematic Analysis
	2.3  Kinematic Synthesis

	3  Electronics and Control
	3.1  Current–Force Conversion
	3.2  Force-Sensitive Resistor Calibration
	3.2.1  Controller Software Architecture


	4  Reinforcement Learning Control Policy
	4.1  Simulation Environment
	4.1.1  Simulation Parameter Selection
	4.1.2  Simulated Actuator Control

	4.2  Control Policy
	4.2.1  Reward Function
	4.2.2  Observation and Action Spaces
	4.2.3  Episode Termination Criteria in Deep Reinforcement Learning Training


	5  Experiments
	5.1  Bridging the Gap Between Simulation and Physical Environment
	5.2  Simulation Results
	5.3  Experiments in Physical Environment

	6  Conclusion And Future Work
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 References

