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Grasp Prediction Toward Naturalistic
Exoskeleton Glove Control

Raghuraj Chauhan, Bijo Sebastian , Student Member, IEEE, and Pinhas Ben-Tzvi , Senior Member, IEEE

Abstract—This paper presents accurate grasp prediction algo-
rithms that can be used for naturalistic, synergistic control of
exoskeleton gloves with minimal user input. Recent research in
exoskeleton systems has focused mainly on the development of
novel soft or hard mechanical designs and actuation systems for
rehabilitative and assistive applications. On the other hand, esti-
mating user intent for intelligent grasp assistance is a problem that
has remained largely unaddressed. As demonstrated by existing
studies, the complex motions of human hand can be mapped to a
latent space, thereby reducing perceived noise in individual joint
angles as well as the number of variables upon which the prediction
must be performed. To this extent, we present two latent space
grasp prediction algorithms for intelligent exoskeleton glove con-
trol. The first presented algorithm is based on a linear regression to
determine the slope and prediction horizon. The second algorithm
is based on a Gaussian process trajectory matching where the
trajectory of the grasping motion is probabilistically compared to
existing data in order to form a prediction. Both algorithms were
tested on published motion data collected from healthy subjects. In
addition, the experimental validation of the algorithms was done
using the RML glove (Robotics and Mechatronics Lab), which
yielded similar prediction accuracy as compared to the simulation
results. The proposed prediction algorithm can act as the backbone
for a shifting authority controller that simultaneously amplifies
the user’s motion while guiding them toward their desired grasp.
Preliminary work in this direction is also described in the paper,
with directions for future research.

Index Terms—Exoskeleton, grasping, haptics, man-machine
system, orthosis, upper limb.

I. INTRODUCTION

INJURIES that limit or terminate one’s use of their hands lead
to drastic reductions in quality of life. Such injuries prevent

successful interaction with and manipulation of everyday ob-
jects, such as a bag of groceries, a pencil, or even a cup of coffee
[1]. Among other factors, a stroke [2] or brachial plexus injury
[3] can result in such an impairment. Separate from diagnosed
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conditions, 1.23 million American adults have difficulty grasp-
ing or handling small objects as per the most recent U.S. census
(2014) [4]. In this regard, exoskeleton gloves have emerged
as an effective solution toward providing rehabilitation and/or
assistance for individuals suffering from hand disabilities [5].

Over the past few decades, exoskeleton gloves have seen
increased interest, especially for uses in virtual reality, as as-
sistive devices in industrial and military applications, and for
medical rehabilitation. Many novel designs have been presented,
showcasing a variety of actuation methods including rigid link-
ages and soft coupling systems such as those in [6]–[8]. Hard
linkage based designs can ensure precise joint angles and force
transmission while ensuring repeatably of the grasp trajectories.
On the other hand, soft systems are usually more form fitting
and can ensure safety and comfort for the users hand by virtue
of the materials used in the glove. More recently, there have been
efforts to couple the form fitting and comfortable nature of the
soft glove design with the rigid linkage based systems to guide
the finger motion resulting in hybrid designs that combine the
advantages of both these design paradigms [9].

Despite the major advancements in terms of exoskeleton glove
design, little exploration has been made into the user guided
control of these gloves. A review of exoskeleton gloves and their
control methods shows a prevalence of both finger joint position
sensors as well as electromyography (EMG) sensors [10] to
determine user intent. However, the signals from EMG sensors
are often inconsistent and require extensive training for effective
operation [10]–[12]. As of now, EMG sensing technologies
are not mature enough to distinguish between various kinds of
grasps at an acceptably high success rate. Other approaches that
explored the use of muscles on other body parts to generate
the EMG signals require sensing elements to be placed at those
points which, beyond being unintuitive, can induce discomfort
when used for prolonged periods of time. Performing fully
autonomous grasps for the wide variety of activities of daily
living (ADLs) by relying only on perception of the surroundings
(such as through a vision system) is in development [13], but
this requires additional equipment, making the overall setup
cumbersome. Similar issues arise when attempting to track the
human eye to estimate grasp intentions of the user, as performed
by Noronha et al. in [14].

A complicated orthosis, such as the hand exoskeleton with
multiple degrees of freedom (DOF), requires a high level of
intelligence in order to realize the plethora of actions that humans
take while dealing with objects and situations encountered in
daily life. This in turn points toward the need for grasp prediction
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algorithms that can leverage human inputs to provide accurate
predictions.

In this regard, the focus of this paper is to provide a grasp
prediction algorithm that monitors the motion of the user to
come up with accurate predictions. The proposed prediction
algorithm could form the backbone of controllers that aim to
provide assistance to users in performing ADLs. When com-
pared to existing state-of-the-art systems, the above approach
would emphasize naturalistic motion and seamless human-
exoskeleton interaction based on a novel set of grasp prediction
algorithms.

Before going into the details of the proposed grasp predic-
tion algorithms, a brief overview of the anatomy of the hand
and some insight to the various grasps is provided below. The
human hand, despite its complexity, has been well characterized
in terms of its layout and common configurations. The kine-
matic model of the human hand can be constructed such that
there are 21 DOF [15]. Four are allocated to each finger: the
metacarpophalangeal (MCP), proximal interphalangeal (PIP),
and distal interphalangeal (DIP) joints, along with adduction and
abduction of the finger. The remaining five are for the thumb:
the MCP and trapeziometacarpal joints have two each for flexion
and adduction as well as a single DOF for the interphalangeal
joints. Other sources employ models with 26 possible DOFs
[16]; however, this paper is concerned with only the motion of
the finger joints and will adopt the 21 DOF model that will later
be reduced to only 12 independently actuated DOFs.

Common grasping configurations of the human hand, hereto-
fore simply called grasps, have been studied and categorized
based on ubiquity and utility in situations as specific as machin-
ing [17] or as general as those used in the common household
[18]. These common grasps have been taxonomically grouped
to reduce the sheer number of possibilities and unique actions
humans take. A summary and subsequent marriage of previously
developed taxonomies is presented by Feix et al. in [19]. The
GRASP taxonomy therein contains only the 33 grasps that are
the basis for modern studies, including the HUST dataset that is
used in this paper [20]. The HUST dataset contains motion data
from 30 healthy male and female subjects performing each of
the 33 grasps.

Trends can be observed in existing literature regarding the ef-
fective number of DOFs in the hand. First described by Santello
et al. in [21], a principal components analysis (PCA) on the
joint angles exhibited during grasps quantitatively shows that
there are effectively six DOFs to generate the overall posture of
the hand. Other DOF exist in this framework that contribute to
the smaller movements of the hand responsible for complex or
fine tasks. Prior work in [22] demonstrates a clear clustering of
grasps in the latent space which precipitates the hypothesis that
PCA can be used to transform finger joint data as a first step to
facilitate early prediction of grasp intention. The use of reduced
number of PCs allow for the complexity of hand motion to be
greatly simplified from a modeling perspective by reducing the
requisite number of DOFs to sufficiently represent each grasp.
Furthermore, a PCA is known to be able to reduce the magnitude
of noise in data [23] and is therefore a useful tool in the mitigation
of the unintentional, minute movements an impaired individual

can make while executing a grasp. Based on these factors, we
used only the first six PCs for this paper.

This paper presents two grasp prediction algorithms, one
based on regression of motion data and another that uses the
probabilistic comparison of executed trajectories to accurately
predict an intended grasp within a short duration (approx. 25% of
the grasp) from the start of motion. Simulation and formulation
of these algorithms was completed using the HUST dataset
and validation was performed using the RML Glove whose
fundamental mechanics are presented in [9]. These tests serve a
secondary purpose, allowing us to characterize the relationship
between unconstrained motion (HUST) and constrained motion
(RML Glove), as well as the effects of constrained motion
on the clustering and predictability of human grasping. These
prediction schemes can be used in a haptic controller to assist the
user of an exoskeleton glove when they are unable to success-
fully maneuver their hands of their own volition. Section II of
this paper will present our existing regression-based prediction
algorithm [24] and our new probabilistic comparison algorithm
while highlighting the improvements in performance shown by
the newer approach. Section III will discuss the experiments
conducted using the RML Glove and the results of both the sim-
ulations and the experiment. Section IV will present a controller
that makes use of the prediction algorithm to guide the user’s
motion while wearing the glove. Finally, Section V will conclude
this paper.

II. PREDICTION ALGORITHMS

A. PCA and Dimensional Reduction

While a brief formulation is provided in the following section
for the use of PCA, the reader is referred to [21], which contains
a more detailed discussion of the process and the variations
between individuals. This section will focus on the specific for-
mulation based on the HUST dataset. As previously mentioned,
the data were collected from 30 healthy individuals, equally
male and female, who were instructed to grasp different objects,
with three trials for each object. There were three objects for
each of the 33 grasps resulting in 297 trials per subject. The
data for each trial contain joint angle information from the start
of motion to the completion of the grasp at regular intervals.
This dataset does not include information about the adduction
of digits reducing the number of DOFs from 21 to 16. It is known
that for the four fingers, the DIP joint is highly coupled to the
PIP joint during contact free motion of the hand [25]. Therefore,
by observing these relationships, the hand can be considered as
only a 12-DOF system. As previously stated, the pose of the
human hand defined by these DOFs is given by

�θ = [θ1, θ2, . . . , θ12] (1)

where θi=1−12 is the ith joint of the hand. The final pose vector of
each trial �θi=1−297 per subject is combined in the design matrix,
X ∈ R297×12, as given by

X =
[
�θ1, �θ2, . . . , �θ297

]T
(2)
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Fig. 1. Reconstruction of Grasp 17, index finger extension, using an increasing
number of principle components. The six images shown are each of an entire
hand (five fingers) in the final configuration of Grasp 17.

where the data in X have been mean centered. Determination of
the normalized eigenvalues λi and corresponding eigenvectors
(principal components)W of the covariance of the design matrix
XTX results in PCs that are used to map the original poses, �θ
into a lower dimensional space, �φ, via (4)

W =
[
�PC1, �PC2, . . . , �PCp

]
(3)

�φ = �θW. (4)

The terms in W are ordered such that �PC1 ∈ R12×1 has the
largest corresponding eigenvalue λ1 and since only six PCs are
to be considered, p = 6. PCs with larger respective eigenvalues
or weights capture a greater variance of the data in X and are
therefore more significant. It is to be noted that the column
vectors in W are the configuration of each PC in the original
joint space. The effects of using an increasing number of PCs
are shown in Fig. 1 where a greater number of PCs are used to
generate a more accurate reconstruction. It should be noted that
most of the figures in this paper are best viewed in color.

B. Regression-Based Prediction

Measured finger joint data are mapped into the lower dimen-
sional space and regressed using

�ψ(t) = �φ(t) + �β(t)τ+t (5)

where �ψ and �β are, respectively, the extrapolated poses and
regression slopes at the current time t for each PC, and τ+t is
the predicted grasp completion time. The regression for each PC
is calculated for the following iteration using amounts of data
τ−i,t+1 given by

τ−i,t+1 = τ−0 (1 + |1− ζβi(t)|) (6)

where τ−0 and ζ are tunable parameters that are constant for
all PCs and i refers to each PC. The values for the tunable

parameters in (6) was chosen empirically, such that less prior
data are used for a more quickly moving PCs.

The predicted grasp completion time for the next iteration
τ+t+1, mutual to all the considered PCs, is calculated to minimize
the error between each regression line, defined by βi, and the g
possible final configurations for the search set of known grasps

τ+t+1 =
1

g

g∑
j=1

argmin
τ+
t+1

[
p∑

i=1

|βi(t)τ+t+1 − φj + bi,j

p
√
βi(t)2 + 1

]
. (7)

The outer summation includes all the grasps in the search set,
and the inner summation includes all the considered PCs. The
initial pose for each grasp in the search set is bi,j . The grasp
set can be reduced to contain only seminal grasps (g = 8) in
the categorization presented in Section III, thereby reducing the
computational load.

Selection of the most likely grasp after the regression is
accomplished using

sk(t) =

p∑
i=1

λi

∣∣∣∣∣
(φi,k − ψi(t))

γ

φi,k

∣∣∣∣∣ (8)

ck(t) =

∫ t

0

α(1− sk(t)− μ)σdt (9)

where sk(t) and ck(t) are the momentary score and confidence
for each of the possible grasps. In (8), the score is calculated
as a weighted average of the percentage errors between each
of the extrapolated PC magnitudes and each of the known
PC magnitudes, weighted by their respective eigenvalues. The
confidence in (9) is the integral of the excess between the score
and μ. The μ term is used to penalize the confidence ck(t)
when sk(t) < μ. The terms γ, α, and σ are additional tuning
parameters. Once the confidence exceeds a predefined thresh-
old, such that ck(t) ≥ ckmin

, the corresponding grasp becomes
the predicted grasp. The effects of changing this threshold are
discussed in Section III.

C. Trajectory-Based Prediction

1) Gaussian Process Modeling: The trajectory-based pre-
diction algorithm formulates each set of measured grasp data as
a Gaussian process with which the trial data can be probabilis-
tically compared. A more detailed description of the Gaussian
process formulation can be found in [26].

The measurement data for each trial, dimensionally reduced
to the principal components, is time scaled to range from zero to
one and then resampled atm points to maintain uniformity. It can
be considered that the time t corresponding to each measurement
�φ is the progress along the p-dimensional curve taken to perform
each grasp. The nine trials for each grasp are then aggregated
so that each of the m measurements can be considered as a
Gaussian distributionN (μφi,j

, σ2
φi,j

), where i refers to the DOF
and j refers to position along the curve (t).

From this data, the Gaussian process for each dimension
for each grasp is formulated with the radial basis function as
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the kernel

p(t, t′) = σ2
fexp

[
−(t− t′)2

2l2

]
+ σ2

φi
δ(t, t′) (10)

where σ2
f and l are the allowable process covariance and length

factor hyperparameters, and δ is the Kronecher delta. The term
σ2
φi

is variance in the trial data at the time t. Since its value is
only considered when t = t′ due to the Kronecher delta, it can be
assumed that σ2

φi
= σ2

φi,j=t
. The values for the hyperparameters

were tuned to yield smooth curves that did not overfit the priors.
The resulting covariance matrix K is used from a regression at
m′ points along �ts, also ranging from zero to one, using

K∗ = [p(t∗, t1), p(t∗, t2), . . . , p(t∗, tm)] (11)

K∗∗ = p(t∗, t∗) (12)

Φi,j = N (K∗K−1�μφi
, K∗∗ −K∗K−1KT

∗ ) (13)

where t∗ is the time, in �ts, of the point being regressed and
Φ ∈ Rp×mg is the matrix of random variables corresponding
to the p DOFs and mg instances, and has expected values and
variances of �μΦi,j

and �σ2
Φi,j

at each index. The vector �μφi
∈ Rm

refers the original expected values of the ith DOF. The resulting
process is shown in Fig. 2 for a single grasp. The above process
is completed for each grasp once offline.

2) Trajectory Matching: Measured data points, mapped to
the latent variable space, are compared to each of the processes
for each of the grasps. The joint log-likelihood of the measure-
ments (φi,j) belonging to each process (Φi,j) is calculated to
determine a measure of similarity

Lk(�t ) =

p∑
i=1

n∑
j=1

ln{L[φi,j | (μΦi,j′ , σ
2
Φi,j′ )]} (14)

where n is the number of data points available. To expedite this
calculation, the values pertaining to Φi,j′ are not drawn from
the process at the time of measurement tm as re-evaluation of
(11)–(13) requires unnecessary computation. Rather, the value
is drawn from �Φi at an index j ′, where

j ′ = argmin
j
|j ′ − �ts| (15)

resulting in a look-up table implementation of the Gaussian
process.

Furthermore, the original formulation of the Gaussian pro-
cesses involved the time scaling that sets all the grasps times
equal. This is certainly not representative of natural human
action as various tasks take different amounts of time, to say
nothing of the effects due to the physical impairment of the users.
Therefore, the measurement data must be adaptively scaled to
fit each grasp for comparison using

ρk = argmax
ρk

(Lk(�tk )),�tk = ρk�tm (16)

where ρk is the scaling factor for the measurement times for
each possible grasp. This can be considered as evaluating the
likelihood of the measurement at the closest point on the curve.
Equivalently, the l2-norm could be evaluated as the objective

Fig. 2. Comparison of the original, time scaled, resampled motion (top) and
the Gaussian process (bottom) for Grasp 21 tripod variation. The dashed lines
and shaded regions in the bottom plot are the process expected values, μΦi,j

,
and standard deviation, σ2

Φi,j
, respectively.

function instead of the likelihood for simplicity. The most likely
grasp is then, simply, the one for which Lk(�tk ) is greatest or

kpred = argmax
k

(Lk(�tk )) (17)

where kpred is the predicted grasp. It is required that the likeli-
hood is evaluated here, not the l2-norm.

To account for motion that can have frequent starts and stops,
the scaling factor can instead be treated as a vector �ρk ∈ R1×n.
This formulation allows for not only nonuniform time scaling
but also for maintaining a fixed pose for a period of time. In this
case, to prevent artificially increasing the results of (14), only
points that satisfy

||tk,j , tk,j+1||2 ≥ r (18)

for an r of some small value. Therefore, adjacent indexes of
�tk at j and j + 1 must have a distance of at least r along the
trajectory. It should be noted that �tk,s can be allowed to be
semimonotonically increasing due to the unsteady motion of an
impaired hand; however, while not present in the HUST dataset
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Algorithm 1: Grasp Prediction Algorithm, argmax(�L′).
for each grasp, k do
�tm = t0
while tk,0 − 0 ≥ ε do
lk = length(�tm)
for each time in �tm, j do

calculate ρk,j , tk,j
end for
�tm ← [t−lm ,�tm]

end while
calculate L′k and argmax(�L′)

end for

TABLE I
PERFORMANCE RESULTS FOR ALL SUBJECTS USING BOTH

PREDICTION ALGORITHMS

or a normal part of human grasping, the hand motion could
be returning to its starting configuration without completing
the grasp which would be indicated by a continued negative
monotonicity at the end of �tk,s. The issue here is to determine
when the motion has started and what window of the user’s
motion needs to be used in the grasp selection. A solution would
be to determine �ρk in a reverse order, starting with the most recent
measurement, and closing the window once the start of the grasp
has been met within some tolerance ε. Since this process allows
for a different number of points to be used for each grasp, the
value for Lk(�tk) must be normalized by the length of �tk via

L′k = Lk(�tk)/lk (19)

where lk is the number of indices in�tk, andL′k is the normalized
value. The step for this prediction is shown in Algorithm 1.

III. EXPERIMENTAL VALIDATION

A. Simulation

Experimental simulation results for the prediction algorithms
presented in the previous section were completed using individ-
ual trials from the HUST dataset. For both sets of experiments,
each joint angle data point was augmented with random noise
as given below

θe = θ + U(−5◦, 5◦) (20)

where θe is the noisy value used in the prediction algorithm.
In the case of the second algorithm, the time indexes of the
data were expanded by a factor of 1.5 to necessitate the use of
(15). Additionally, in the formulation of the covariance matrices
for each subject, the trial data were excluded to prevent over-
fitting to the model. The results of the algorithms are shown
in Table I. The trajectory-based prediction does not require a
condition to be met for a grasp prediction to occur; therefore,
for uniformity, the accuracy values presented are for when the

TABLE II
GRASP GROUPINGS

Fig. 3. Absolute prediction accuracy for all 33 grasps by subject 1. The
accuracy of the trajectory-based prediction (orange) is, in general, higher than
that of the regression-based prediction (blue).

trial is 25% complete. One metric used is the absolute accuracy
where the prediction grasp number and tested grasp number are
the same. Alternatively, heuristic accuracy in the prediction is
established if absolute accuracy or either of the following criteria
is achieved.

1) The predicted grasp and the test grasp occupy the same
group according to Table II. The groups were determined
based on similar object interaction.

2) The mean joint angle error between the predicted and test
grasp does not exceed 20◦, which indicates a geometric
similarity that accounts for permutations in grasps unique
to individuals.

These criteria exist only as a metric for the performance of
the grasps.

The absolute accuracy for each grasp for subject 1 using
both prediction algorithms is shown in Fig. 3. While both have
similar heuristic accuracies according to the listed performance
metrics, it is clear to see that the trajectory-based prediction has a
much higher absolute accuracy: 29.29% versus 71.38%, as given
in Table I. The specific prediction results for both prediction
algorithms is shown in the confusion matrices in Fig. 4. A high
absolute accuracy is indicated by a high number of occurrences
(dark blue) along the main diagonal of each plot. The accuracy
of the regression-based prediction is a result of using tuning
parameters α, σ, μ, and γ, which maximize the performance for
all subjects.

1) Regression-Based Prediction Results: By choosing more
appropriate tuning parameters for each individual, higher grasp
prediction fidelity can be achieved. In the case of subject 1,
an accuracy of 90% was achievable, by manually tuning the
parameters. The remainder of the discussion into this algorithm’s
performance shall, for simplicity, continue to focus on subject 1;
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Fig. 4. Confusion matrices that result from the regression-based prediction
(a) and the trajectory-based prediction (b) for subject 1 after 25% of the motion
has completed. The number of occurrences for each prediction is colored
according to the bars on the right. The prediction for the regression-based
algorithm was tested using parameters that maximize the results for all subject.

however, the results shown can be achieved by any of the
subjects.

In several cases, the errors in grasp prediction are minimal.
For example, when testing the worst performing grasp, Grasp 2,
the incorrect predictions of Grasp 13 and Grasp 14 had average
joint angle errors of 22.11◦ and 25.68◦, respectively. Both errors
are small enough to reinforce the fact that the algorithm still
produces grasps close to the intended one and therefore, can be
used in the proposed control scheme as described later in this
paper.

Converging to another grasp within the same group from
Table II is acceptable because the groups contain grasps that
only interact with objects in a similar fashion. This requirement

means that these grasps, by necessity, have a similar configu-
ration. Fig. 5 shows the configuration for the grasps in the two
finger pinch group. Grasps in this group interact with an object
using the thumb and the index finger. The remaining digits do not
interact with the object and, therefore, remain out of the way. It
can be seen that specific configuration of those remaining digits
are nebulous since they do not perform any specific function. For
an individual with an impairment trying to manipulate an object
using only their thumb and index finger, any of these grasps
would suffice.

The effects on the accuracy and speed of varying the threshold
parameterμ can be seen in [24] where a larger threshold required
an increased percentage of the grasp to be completed before (9)
converges. Similar effects are seen for varying α, σ, and γ. This
is due to the grasp decision still being made on the error between
each PC configuration, φi,k − ψi(t).

2) Trajectory-Based Prediction Results: The trajectory-
based prediction displays objectively higher fidelity to the
test/desired grasp. As shown in Fig. 3, the trajectory-based
prediction determines the actual test grasp with much higher
frequency. For many grasps, it can be seen that the regression-
based prediction never predicts the correct grasp. As discussed
in [24], while it is acceptable to converge to a similar grasp,
continued iterations of the prediction as more of the grasp is
completed is likely to converge to the absolute intended grasp.
The trajectory-based prediction is superior in this regard, as only
a single run of the prediction, lasting less than one quarter of the
grasp motion, results in this absolute determination.

The stochastic treatment of each grasp allows for more instan-
taneous grasp predictions as a likelihood evaluation using (14)
and (16) can be performed with a single measurement. Fig. 6
shows the heuristic and absolute accuracies in the prediction
for all subjects. There is a clear trend that, as the amount of the
motion completed increases, so does the chance of the prediction
being accurate by up to approximately 20%.

In Fig. 7, the L′k values for each of the grasps during a trial
of Grasp 14 tripod are displayed. At the start of trial, Grasp 27
quadpod appears to be the most likely grasp. These two grasps
are used to hold a small object of approximately the same size
with three or four fingers, respectively. It follows that both
motions would initially be likely candidates in this case. In
Fig. 7(b), the trend can be more clearly seen that unlikely grasps
have a decreasing L′k over time.

B. Hardware Experiment and Results

The two prediction algorithms were conducted on data col-
lected using the a glove prototype based on the mechanism in
[9].

1) Experimental Setup: The RML Glove is a lightweight
exoskeleton designed to unobtrusively guide the user’s hand in
naturalistic motion profiles. This exoskeleton glove mechani-
cally couples the motion of each finger joint so that they move
in a trajectory that best approximates the natural closing and
opening motion of a hand. This is accomplished via a dual
four-bar mechanism shown in Fig. 8 and described in greater
detail in [9]. The original design of the glove in that work
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Fig. 5. Reconstructed configurations of the grasps within the two finger pinch group from Table II as demonstrated by subject 1 are shown in the figure, from
left to right: Grasp 9 palmar pinch (black), Grasp 24 tip pinch (red), Grasp 31 ring (blue), Grasp 33 inferior pincer. Grasps in this group exhibit similar interaction
with an object using only the thumb and index finger (dashed), whereas the remaining digits “float” (solid). The configurations shown are of the entire hand.

Fig. 6. This figure shows the prediction accuracy for all of the subjects using
the trajectory-based prediction as a function of the grasp progress. The heuristic
accuracy (orange) is based on the defined metrics while the absolute accuracy
(blue) is based solely on metric (a). The dashed lines and shaded regions are the
mean and standard deviation, respectively.

Fig. 7. Values for L′k over the progress of the grasp while testing Grasp 14
tripod. The magnified view of the four most likely grasps (a) and the likelihood
of all the grasps (b) are shown. Grasp 27 quadpod begins as the most likely grasp
but is overtaken as more of the motion completes.

used a pneumatic actuation system, which was later replaced
by series elastic actuator (SEA) modules allowing for precise
force control capabilities on each individual finger applied as
indicated in Fig. 8. The layout shown is replicated for each digit

Fig. 8. Mechanical linkage layout for the RML Glove. Colored linkages
Li are associated with each phalange and Ci are complementary. The bent
configuration of the finger when articulated is shown in gray.

and a modified version, with only a single four bar assembly, is
used for the thumb.

For purposes of this experiment, the SEA is disconnected
from the linkage mechanism so that the wearer of the glove can
freely move and the only restrain on their motion is the kinematic
coupling described typically by

θMCP = 1.02θPIP = 1.15θDIP. (21)

The angles used in this equation represent the joint angles of the
glove that would ideally align with the corresponding joints on
the finger. As discussed later in the results, this misalignment
visible in Fig. 9 does not impact the effectiveness of the data
collected.

The layout shown in Fig. 8 also locates a rotary potentiometer
(the white hexagon at R1) approximately at the MCP joint.
The RML Glove does not allow for measurements of the fin-
ger abduction/adduction, instead only the five MCP joints are
measured. The potentiometer, Bourns 3382, allows for measure-
ment of the joint angles and thereby monitoring of the hand
pose. The data from the potentiometer are read by a Teensy
3.6 microcontroller and recorded at 20 Hz for offline processing
and evaluation of both prediction algorithms. Empirical evalua-
tion of the sensor performance indicated presence of noise in the
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Fig. 9. Experimental setup and data flow of the measurements (solid arrows)
and the control inputs (dashed arrows). The measurement data from the glove
are sent to the MCU, which processes it into joint angles which it sends to the
computer for use in the grasp prediction. The resulting assistive actions would
then be passed back to the MCU which would control the actuators on the glove.

angle measurements of U(−6.3◦, 6.3◦). A diagram of the data
flow for the experimental setup is shown in Fig. 9.

The kinematic coupling of the glove limits the ability of the
wearer to perform many of the specialized grasps and explicitly
any of those that violate its inherent kinematic coupling, such as
the entire flat parallel group. However, it is designed to assist
in the grasping of basic objects. To that end, the following
geometrically dissimilar grasps were tested: medium cylinder,
ring, tripod, quadpod, and ventral. Three objects were tested
for each grasp, ten times each by the same user. Five of those
ten trials were used to formulate the Gaussian processes shown
in Fig. 10. The remaining five were used for the testing of the
prediction. The data used in these experiments were based on
the measured MCP joint angles. However, it can be seen in
Fig. 9 that the joints of glove do not perfectly align with the
joints of the finger. Despite this, the measured angles were still
sufficiently unique to each grasp identification by the prediction
algorithm. The misalignment between the mechanism and the
hand does not violate this sufficiency, as the mechanism still
bends with the finger, even if the relationship is not directly
proportional as is the case when the glove is not an exact fit. In
other words, it is assumed that there exists a bijective mapping
between the mechanism angles and finger angles that are used for
the prediction. The mapping itself would be different in different
cases depending on the fit of the glove with the user’s hand.
Fit or user specific characteristics are automatically accounted
for when training data are collected for each specific glove-
user pair. Experimental data were collected from four healthy
subjects with hand sizes appropriately matched to the size of
the glove.

2) Experimental Results: The Gaussian process representa-
tion of the trajectories in the latent space for one of the subjects

Fig. 10. Gaussian processes generated from the motion of a single subject
completing the specified grasps while wearing the exoskeleton glove.

for each of the five grasps are shown in Fig. 10, where it can
be seen that only five PCs are shown. Due to the five DOFs
in the glove, after expansion of the motion according to (21),
the weights for each of the PCs beyond the fifth were essentially
zero, as expected. The trajectories shown are also repeatable and
unique, despite the misalignment between the mechanism and
the hand.

The average prediction accuracy, using the above-described
trajectory-based prediction, at 25% of the motion, was 68.45%
with a standard deviation of 6.21%. While not definitive, the
kinematic coupling limits the amount of minute distinct motions,
manifesting in the higher order PCs, that the user can make to
conform to the grasped object. This can be seen in Fig. 10,
where the PCs beyond the second take very similar paths. The
prediction, after 75.00% and 100.00% of the motion completes,
was 87.86% and 90.00% accurate. The confusion matrix of
the hardware experiment prediction, at 25% of the completed
motion, can be seen in Fig. 11, where both the means and
standard deviations of each result are shown. While most of
the grasps are predicted correctly, the ventral grasp results in



30 IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, VOL. 50, NO. 1, JANUARY 2020

Fig. 11. Confusion matrix resulting from the trajectory-based prediction on
the experimental glove data. The mean accuracy and (standard deviation) are
shown.

a predicted ring grasp. It is unclear why this occurs since the
geometric configurations are dissimilar; however, as more of
the motion completes, the ventral grasps are correctly predicted
as such. This trend aligns with what was seen in the simulation:
more motion leads to more accurate predictions. Alternatively,
the ring grasp is sometimes identified as the tripod grasp, which
is somewhat understandable due to the extension of the middle
finger in both grasps at the start of motion.

In regards to the dimensional reduction, for all of the grasps
except the ring grasp, the first PC takes a similar path. It always
appears to take an S-shaped path but ends at a different magni-
tude. This is due to that PC corresponding to small motion in the
thumb and index finger, some motion in the middle finger, and
large motion in the ring and pinky fingers. It therefore makes
sense that the motion for the ring grasp has a low magnitude for
this PC as the middle, ring, and pinky finger should stay almost
entirely extended. Since it is still the combined similarity of all
PCs being considered, the variability is significant enough for
the prediction to be accurate.

IV. FUTURE WORK

The work presented here paves the way and yields necessary
insights for future work in exoskeleton gloves. As mentioned
previously, the grasp prediction algorithms discussed above
could be used in the design of user guided control of exoskeleton
gloves. The joints angles sensed by the glove, as well as the
force exerted on the SEA by the user can be used to determine
the specific grasp that the user was trying to achieve, based
on which the necessary assistive force can be determined by
the glove using a shifting haptic authority controller [27]. The
assistive control action that the glove exerts control on the user
ueu is calculated as follows:

ueu = ω(�φ) �up + (1− ω(�φ)) �uu (22)

where �up and �uu are the control actions, along each finger, or
DOF in a more general case, to move the user toward the pre-
dicted configuration and the forces to amplify the user’s current
movements, respectively. The parameter ω(�φ) is a measure of

the confidence in the prediction. The user control �uu will be an
amplification of the motion of the user as measured by spring
deflection in the SEA. Prior work by [28], which presents a
positive feedback controller coupled with a low pass filter to
maintain stability, will be implemented to determine �uu. This
controller will be tested on the exoskeleton system shown in
Fig. 8.

After moving the hand to the desired grasping configuration,
the next step is to determine how to exert the necessary forces to
maintain a firm grasp on the object. Work presented in [29] used
the iSAFER glove, an expansion of the SAFER glove presented
in [30]. By using force-resistive sensors at the fingertips, the
glove can detect when the object being held by the glove starts-
to-slip, which when combined with the above controller, would
allow for a start-to-finish control algorithm to assist the user in
each phase of attempting to grasp an object.

The presented control scheme and prediction algorithm will
be tested in real time on the RML Glove to evaluate the efficacy
and qualitative usability of the assistive controller. The full
system will be integrated into a mobile, lightweight unit that
the user can wear throughout their day.

V. CONCLUSION

This paper presented two grasp prediction algorithms with
the intention of using the grasp prediction to inform an assistive
controller for an exoskeleton glove. Both algorithms begin by re-
ducing the dimensionality of the data used in the prediction from
16 DOF (original hand data) to 6 DOF (principal components).
Previous work demonstrates the beneficial effects of performing
the prediction in this reduced dimensional space. The first algo-
rithm performs a linear regression along the trajectory of each
PC. The amount of data used to calculate the slope of the regres-
sion line decreases as the slope of the regression line increases.
This mitigates the effects of the trajectory taking an unknown
shape. The regression lines for each dimension are evaluated at
a point forward in time that minimizes the error in configuration
between each of the potential grasps that the user could be
attempting. The second algorithm formulates the motion of each
grasp as a Gaussian process that allows for the probabilistic
comparison with the user’s motion. The motion of the user is time
scaled to maximize the log-likelihood of each possible grasp.

Both of the above grasp prediction algorithms were tested
on HUST dataset that contains motion data from healthy users
performing each of the grasps in the Feix taxonomy. An average
accuracy of approximately 75% was achieved based on only
approximately 25% of the grasping motion completed. While
both predictions found grasps that were either geometrically
or functionally similar, the trajectory-based algorithm was able
to predict the exact grasp more consistently. Furthermore, the
accuracy of the trajectory-based algorithm increased signifi-
cantly as more of the grasp was completed and did not require
a finite convergence time before rendering a prediction, unlike
the first algorithm. In this way, the second algorithm is a more
likely candidate for implementation as it can immediately be
used to assist the wearer. Beyond simulated experiments, the
trajectory-based prediction was tested on the RML Glove, which
makes use of kinematic coupling in the finger joints to simplify
the actuation and control of the glove. The glove was tested on
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five grasps with results from four healthy subjects that were in
line with the accuracies found during simulation.

We believe that the presented algorithms will increase the
degree to which exoskeleton gloves can be integrated into ADL.
They provide a way for users to overcome their physical im-
pairments by augmenting their movements while relying on the
user’s capacity to make intelligent grasping choices.
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