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This paper presents a novel modeling approach for the mechanics of multisegment, rod-
driven continuum robots. This modeling approach utilizes a high-fidelity lumped parame-
ter model that captures the variation in curvature along the robot while simultaneously
defined by a discrete set of variables and utilizes the principle of virtual power to formu-
late the statics and dynamics of the continuum robot as a set of algebraic equations for
the static model and as a set of coupled ordinary differential equations (ODEs) in time
for the dynamic model. The actuation loading on the robot by the actuation rods is formu-
lated based on the calculation of contact forces that result in rod equilibrium. Numerical
optimization calculates the magnitudes of these forces, and an iterative solver simultane-
ously estimates the robot’s friction and contact forces. In addition, modeling considera-
tions including variable elastic loading among segments and mutual segment loading due
to rods terminating at different disks are presented. The resulting static and dynamic
models have been compared to dynamic finite element analyses and experimental results
to validate their accuracy. [DOI: 10.1115/1.4027235]
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1 Introduction

Modeling continuum robot mechanics poses several challenges
in comparison to conventional robots with discrete joints [1],
including: (1) Joint Space Definition: there is no intrinsic discrete
set of variables that composes the joint space—the arm’s contin-
uum nature leads to theoretically infinite degrees of freedom; (2)
Importance of Elasticity: unlike most conventional robots in
which elasticity is considered as secondary effect, in continuum
robots elasticity plays a key role in determining the continuum
robot’s shape; and (3) Actuation Localization: continuum robots
typically localize actuation at the base of arm and transmit the
actuation along the structure, and this actuation transmission to a
distal segment will also load proximal segments through which it
is routed.

In addition, there are a wide variety of continuum robotic struc-
tures presented in the literature. The most common are cable-
driven robots [2–5] where a backbone is deformed by cabling
along the robot’s length and terminating at different segments.
Rod-driven robots [6,7] use elastic rods instead of cabling, ena-
bling transmission of compressive forces and increasing the struc-
ture’s rigidity. Pneumatic and hydraulic continuum robots [8–11]
utilize segments composed of pneumatic or hydraulic “muscles”
to bend into desired shapes. Concentric-tube robots [12,13] are
composed of concentric precurved elastic tubes, with the relative
displacement and orientation controlling the robot’s shape. Shape
memory alloy spring pairs have also been used to actuate an
octopus-like continuum robot [14].

This research is motivated by the need for high fidelity models
of continuum robots defined by a set of discrete parameters. Most
previous research modeling continuum robot mechanics may be
grouped into two categories: low-fidelity lumped parameter mod-
els and high-fidelity distributed parameter models. Structurally,
continuum robots are composed of a series of actuated segments,
as shown in Fig. 1. In low-fidelity lumped parameter models, each
segment is represented by a single circular arc, and the robot is

defined as the serial chain of these arcs. In the high-fidelity distrib-
uted parameter models, the continuum robot is considered as
either a one-dimensional generalized spatial curve or a three-
dimensional elastic body. Dynamic models have been derived for
both approaches to model the robot’s time-varying behavior. In
addition, kinematic and static models have been formulated for
the lumped and distributed parameter time-invariant models.

Existing low-fidelity lumped parameter models do not account
for curvature variations along the continuum robot. These varia-
tions may be due to external loading (e.g., gravity or external con-
tact) or internal loading (e.g., friction). Webster and Jones [15]
provide an exhaustive review of time-invariant constant curvature
models. Chirikjian and Burdick [16] studied curve-fitting using
Bessel functions to generated a desired configuration from task
requirements, then map actuation variables to match the shape.
Dynamic time-varying models have included Tatlicioglu et al.
[17] and Godage et al. [8] to adapt the Euler–Lagrange equations
for pneumatic [17] and hydraulic [8] continuum robots. When
only considering elasticity and actuation and with special
design considerations for the arm itself (e.g., optimal spacing
between disks), this is a valid assumption. However, in the pres-
ence of gravity, inertial and other external forces, the accuracy is
reduced [18].

Existing high-fidelity distributed parameter models allow an ar-
bitrary robot shape in response to loading, allowing for curvature
variations along each segment. Time-invariant models include
Cosserat rod and local energy minimization. Jones et al. [18] and
Renda et al. [19] used Cosserat rod theory to represent the rod as a
one-dimensional curve in space with all relevant elastic, gravita-
tional, and actuation forces modeled as applied loading. Rucker
et al. [20] determined equilibrium by tracking the local minimiza-
tion of an energy function during motion of a concentric tube
robot. Dynamic time-varying models include work by Rucker and
Webster [21], Spillmann and Teschner [22] and Lang et al. [23] to
adapt time-invariant models with the inclusion of inertial effects.
Chirikjian [24] approximated a serpentine robot as a continuum
body and formulates the dynamics using the continuum mechanics
conservation equations. Gravagne et al. [25] utilized Hamilton’s
principle to calculate the dynamics as a set of partial differential
equations for a cable-driven robot.
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Existing work in high-fidelity lumped parameter models has
been limited. Rone and Ben-Tzvi [26,27] utilized a subsegment-
based discretization to utilize subsegment curvature and torsional
twist angles to define mechanics models using the principles of
virtual work [26] and power [27] for a cable-driven continuum
robot. Xu and Simaan [28] used a subsegment-based analysis for
rod-driven continuum robot statics using constrained minimiza-
tion. Jung et al. [29] utilized a lumped mass model for each disk
and Newton’s second law to formulate the dynamic equations of
motion for a cable-driven continuum robot. Giri and Walker [30]
utilized a similar mass-spring-damper model to simulate a
pneumatic-muscle based continuum robot using Lagrangian
mechanics.

This high-fidelity lumped parameter model approach provides
numerous benefits to a variety of applications in comparison to
the low-fidelity lumped parameter models described previously,
including the ability to capture variations in curvature in manipu-
lation tasks due to contact forces, such as bending around a corner
or wrapping around an object. In dynamic applications, such as
the use of a continuum robot as a tail on a legged system, the
model could be used to more accurately predict the tail’s dynamic
forces and moments on the chassis to assist in stabilization and
maneuvering. Furthermore, the fidelity of the discretization of
each segment may be tuned based on the required level of accu-
racy in the model. In comparison to the current high-fidelity dis-
tributed parameter models, the lumped parameter model is more
amenable to rapid, possibly real-time, calculation on currently
available hardware. In addition, the virtual power model allows
for the generation of dynamic equations of motion for the exact
number of parameters used to define the model, unlike [29], and
does not require differentiable energy functions for the physical
effects, unlike [30].

1.1 Contribution. This paper builds on the authors’ previous
work in continuum robot mechanics [26,27] by considering rod-
driven continuum robot actuation structures and multisegment
continuum robots. For the rod-driven actuation structure, the cal-
culation of contact forces between the rod and disks is signifi-
cantly more complicated than between cables and disks. As a
result, this paper focuses more on the derivation and calculations
associated with this feature, as compared to the focus in Ref. [27]
on the overarching virtual power model. For multisegment contin-
uum robots, this paper presents the modifications to the single seg-
ment model required to account for actuation rods terminating at
disks other than the final disk. The virtual power formulation
makes this a relatively straightforward extension, though calcula-
tion of the inertial, elastic, gravitational and actuation loading will
all be impacted.

1.2 Outline. This paper is organized as follows: Sec. 2
provides background into the method of virtual power and the
rod-driven robot structure considered in this work. Section 3
presents the continuum robot kinematic analysis, including
formulations for the disk positions, velocities, and accelerations.
Section 4 derives the rod-driven continuum robot mechanics
model, with particular emphasis on elasticity and actuation.
Section 5 describes the generalization of single-segment modeling
to a multisegment structure. Section 6 describes the model’s
numerical implementation and compares the results to dynamic
finite element analysis (FEA) and experimental results. Section 7
summarizes the paper and describes future work.

2 Background

In this section, the theoretical background for the method of vir-
tual power is provided, along with a description of the rod-driven
continuum robot structure.

2.1 Principle of Virtual Power. The principle of virtual
power, also called Kane’s method, uses variational calculus to cal-
culate mechanics by finding the stationary point of the virtual
power of the external forces and moments applied to the system
[31] and has been previously applied to both rigid-link [32,33]
and flexible [34] robots. This virtual power P is found using Eq.
(1), where Mi,ex and Fi,ex are the net external moment and force
on rigid body i and xi and vi are the angular and linear velocity at
the body i center-of-mass.

P ¼
X

i

Mi;ex � xi þ Fi;ex � vi

� �
(1)

To take the variation, the generalized coordinates qk and veloc-
ities _qk are chosen to define the system’s dynamic configuration.
Each body’s velocities may be defined with respect to _qk using the
partial angular velocity xi,k and the partial linear velocity vi,k,
shown in Eq. (2). Using this formulation, the virtual power varia-
tion DP in Eq. (3) may be found. To calculate the equilibrium, set
DP¼ 0. For this to be true for any arbitrary variation in _qk, Eq. (4)
must be true, providing the mechanics governing equations.

xi ¼ xi;k _qk; vi ¼ vi;k _qk (2)

DP ¼
X

i

Mi;ex � xi;k þ Fi;ex � vi;k

� �" #
D _qk (3)

X
i

Mi;ex � xi;k þ Fi;ex � vi;k

� �
¼ 0 (4)

Equation (5) defines the terms that will contributed to Mi,ex and
Fi,ex in this paper: the inertial effects force Fi,inr and moment
Mi,inr, the elastic effects moment Mi,el, the gravitational effects
force Fi,gr and the actuation effects (with or without friction) force
Fi,act and moment Mi,act. A key benefit of virtual power is its
ability to directly include forces and moments in the mechanics
calculation without requiring the calculation of internal forces
between bodies. Section 4 provides the analysis for the calculation
of the forces and moments that make up Mi,ex and Fi,ex.

Mi;ex ¼ Mi;inr þMi;el þMi;act;
Fi;ex ¼ Fi;inr þ Fi;gr þ Fi;act

(5)

2.2 Rod-Driven Continuum Robotic Structure. Figure 1
shows the rod-driven structure under consideration. It is composed
of eight disks rigidly mounted along an elastic core. Six rods
actuate the structure, with three terminating at the fourth and
eighth disks, resulting in a two-segment structure.

This structure leads to a natural choice for the robot’s discreti-
zation, shown in Fig. 2. The mass and inertia of the core and rods

Fig. 1 Multisegment continuum robotic structure (a) three-
dimensional representation of structure with eight disks rigidly
mounted along an elastic core, with six actuation rods to con-
trol shape. Three rods terminate at the fourth disk, and three
rods terminate at the eighth disk. (b) Typical planar mode shape
of two-segment manipulator illustrating bending of the proxi-
mal and distal segments.
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surrounding each disk are added to the mass and inertia of that
disk, resulting in a generalized rigid-body. For simplicity, the
generalized rigid-bodies composing the continuum robot will con-
tinue to be referred to as disks. The kinematics assumes circular
subsegment arcs separate each disk. Based on the core and rod
properties, each subsegment’s bending applies moments to the
subsegment’s two adjacent disks. Compressive and shear loads
are neglected due to the core’s relative incompressibility com-
pared to its bending. Torsion is neglected in this paper to simplify
the initial analysis. Without torsion, the actuation rod bending is
assumed to be coplanar with the elastic core, enabling calculation
based on elastic core bending. In addition, torsion would also
impact the calculation of contact forces along the continuum
robot. As discussed in Sec. 7, modeling torsion is a key aspect of
the future work.

3 Kinematic Analysis

In this section, the continuum robot kinematics are derived,
including the local disk linear positions and angular velocities,
and the global positions, velocities and accelerations of the disks.

3.1 Local Coordinates, Linear Position, and Angular
Velocity. As discussed in Sec. 2.1, the generalized coordinates
and velocities define the robot’s dynamic configuration. Figure 3
illustrates the model’s generalized coordinates, as well as other cal-
culated values. Based on the subsegment discretization in Sec. 2.2,
two coordinates define the difference in position and orientation
between two adjacent disks: the orthogonal subsegment curvatures
bi (x-z plane) and ci (y-z plane). The vector qi,lcl in Eq. (6) of these
variables defines the generalized coordinates for subsegment i, and
the collection of these vectors for an n-subsegment continuum robot
results in the robot’s generalized coordinates qk, shown in Eq. (7).

qi;lcl ¼ bi; ci½ �T (6)

qk ¼ qT
1;lcl; qT

2;lcl; …; qT
n;lcl

� �T
(7)

To simplify the analysis, three intermediate variables are
defined in Eq. (8): the subsegment curvature magnitude ki, the
bending plane angle ui and the subsegment bending angle hi,
where L0 is the spacing between disks. The atan2 function is a
four quadrant mapping of the two quadrant atan(ci/bi) function.

ki ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i þ c2
i

q
; ui ¼ atan2 ci;bið Þ; hi ¼ kiL0 (8)

Each disk has a coordinate system coincident with its center-of-
mass. For disk i, the local coordinate system is xi yi zi. The robot’s
base global frame is x0 y0 z0.

Based on geometric analysis [15], the local position vector pi,lcl

of the disk i center-of-mass relative to the frame i� 1 is calculated
in Eq. (9). For this and following expressions, the limit limk!0 is
substituted for the given expression when ki¼ 0.

pi;lcl ¼ cui
1� chi
ð Þ=ki; sui

1� chi
ð Þ=ki; shi

=ki

� �T
(9)

To define the orientation, the unit vectors of the frame i in frame
i� 1 are used. Three sequential rotations define the rotation matrix:
(1) rotating hi around the yi� 1 axis, (2) rotating ui around the zi� 1

axis, and (3) rotating�ui around the current zi axis. The third rota-
tion ensures the frame is not subjected to a “torsional” rotation along
the subsegment [15]. The resulting rotation matrix Ri,lcl is shown in
Eq. (10). The columns of Ri,lcl correspond to the tangent vector ti,lcl,
the normal vector ni,lcl and binormal vector bi,lcl, shown in Eq. (11).

Ri;lcl ¼
c2
ui

chi
� 1ð Þ þ 1 sui

cui
chi
� 1ð Þ cui

chi

sui
cui

chi
� 1ð Þ c2

ui
1� chi
ð Þ þ chi

sui
chi

�cui
shi

�sui
shi

shi

2
4

3
5 (10)

ni;lcl; bi;lcl; ti;lcl½ � ¼ Ri;lcl (11)

The local angular velocity xi,lcl is defined based on the
“motion” of ti,lcl. It is known that _ti;lcl ¼ xi;lcl � ti;lcl and
0 ¼ xi;lcl � ti;lcl (because torsion is neglected). With these proper-
ties, xi,lcl is found by simplifying the cross product of ti,lcl and
xi;lcl � ti;lcl, shown in below equation:

ti;lcl � xi;lcl � ti;lcl

� �
¼ ti;lcl � ti;lcl

� �
xi;lcl � xi;lcl � ti;lcl

� �
ti;lcl

xi;lcl ¼ ti;lcl � _ti;lcl

(12)

3.2 Global Positions, Velocities, and Accelerations. Rota-
tion matrices Ri for each disk’s orientation may be found recur-
sively, shown in Eq. (13), and the three global unit vectors that
define this frame are denoted xi, yi, and zi and are defined in
Eq. (14). Using these rotations, the disk i positions pi and angular
velocities xi are found recursively, shown in Eqs. (15) and (16).

Ri ¼
Ri;lcl i ¼ 1

Ri�1Ri;lcl i > 1

�
(13)

xi; yi; zi½ � ¼ Ri (14)

pi ¼
pi;lcl i ¼ 1

pi�1 þ Ri�1pi;lcl i > 1

�
(15)

xi ¼
xi;lcl i ¼ 1

xi�1 þ Ri�1xi;lcl i > 1

�
(16)

To simplify the following analyses, note that _Ri ¼ xi � Ri. The
linear velocities vi and angular accelerations ai are found from the
derivatives of Eqs. (15) and (16), shown in Eqs. (17) and (18).
The linear accelerations ai are found from the derivative of
Eq. (17), shown in Eq. (19).

vi ¼
_pi;lcl i ¼ 1

vi�1 þ xi�1 � Ri�1pi;lcl þ Ri�1 _pi;lcl i > 1

�
(17)

ai ¼
_xi;lcl i ¼ 1

ai�1 þ xi�1 � Ri�1xi;lcl þ Ri�1 _xi;lcl i > 1

�
(18)

Fig. 3 (a) Illustration of the x-z plane curvature bi and the y-z
plane curvature ci. (b) Illustration of the intermediate coordi-
nates: the in-plane curvature ki, the bending plane angle ui, and
the subsegment bending angle hi.

Fig. 2 Discretization of proximal and distal subsegments
accounting for the disk, core, and rods, with mass mi and
moment of inertia Ii,lcl
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ai ¼
€pi;lcl i ¼ 1

ai�1 þ _xi�1 � Ri�1pi;lcl þ 2xi�1 � Ri�1 _pi;lcl

þxi�1 � xi�1 � Ri�1pi;lcl

� �
þ Ri�1 €pi;lcl

� 	
i > 1

8<
:

(19)

4 Rod-Driven Mechanics

In this section, the components of Mi,ex and Fi,ex from Eq. (5)
are formulated for the rod-driven continuum robot structure. A
single-segment, three actuation rod continuum robot is used for
the analysis in this section. This analysis will be generalized for a
multisegment structure in Sec. 5.

4.1 Inertial Effects. Equations (20) and (21) define the Fi,inr

and Mi,inr, where mi is the disk’s mass and Ii is the disk’s moment of
inertia. Ii depends on the disk’s orientation and the local radial (Ii,xx,lcl

and Ii,yy,lcl) and axial (Ii,zz,lcl) moments of inertia, shown in Eq. (22).

Fi;inr ¼ �miai (20)

Mi;inr ¼ �Iiai � xi � Iixi (21)

Ii ¼ RiIi;lclR
T
i ; Ii;lcl ¼

Ii;xx;lcl 0 0

0 Ii;yy;lcl 0

0 0 Ii;zz;lcl

2
4

3
5 (22)

4.2 Elastic Effects. Elastic effects account for the forces and
moments generated by the robot in response to deformation. For
the rod-driven continuum robot structure, the continuum core and
actuation rods are sources of elasticity. The elastic effects for both
are assumed to be purely bending, as discussed in Sec. 2.2.

The continuum core bending moment magnitude Mi,bnd,c is
defined in Eq. (23), where Ec is the core’s Young’s modulus and
Jxx,c is the core cross section’s second moment of area.

Mi;bnd;c ¼ EcJxx;cki (23)

Each subsegment’s three or six actuation rods are assumed to
bend as circular arcs in planes parallel to the core subsegment
bending defined by ki and ui. The curvature ki,j of the jth rod in
the ith subsegment is calculated from ki, ui and the local routing
hole position rj,hl,lcl. The rod subsegment curvatures are calculated
by assuming the actuation rods’ circular arcs are concentric with
the core’s circular arc. This assumption is valid because the core
and each rod are assumed to be held tangent to the two surround-
ing disks. The intersection of the two disk planes is the core and
rod arc’s center.

The rod curvatures are found by determining the radius of cur-
vature offset di,j of the rod relative to the core’s radius of curva-
ture 1/ki,j, defined in Eq. (24) where rh is distance between the
hole and disk center. Figure 4 illustrates the hole position vectors
and offsets for a three-rod subsegment, with hole positions defined
by Eq. (25). This offset may then be added to the core’s radius to
determine the rod’s radius of curvature, shown in Eq. (26).

di;j ¼ cui
; sui

; 0
� �T � rj;hl;lcl (24)

r1;hl;lcl ¼ rh 1; 0; 0½ �T ;
r2;hl;lcl ¼ rh �0:5; 0:5

ffiffiffi
3
p

; 0
� �T

;

r3;hl;lcl ¼ rh �0:5; �0:5
ffiffiffi
3
p

; 0
� �T (25)

1=ki;j ¼ 1=ki � di;j ! ki;j ¼ ki= 1� kidi;j

� �
(26)

The jth actuation rod bending moment magnitude Mi,j,bnd,r of
subsegment i is defined in Eq. (27), where Er is the rod’s Young’s
modulus and Jxx,r is the rod cross section’s second moment of
area.

Mi;j;bnd;r ¼ ErJxx;rki;j (27)

The total bending moment Mi,bnd of subsegment i is defined in
Eq. (28). The magnitude of Mi,bnd is the sum of the subsegment’s
core and rod elastic moment magnitudes, and the direction of
Mi,bnd is orthogonal to the bending plane defined by ui. The result-
ing elastic moment loading Mi,el on each disk i is found using
Eq. (29). Intermediate disks are loaded with the difference of the
two adjacent subsegments’ bending moments, while the terminal
disk is loaded with the final subsegment’s bending moment.

Mi;bnd ¼ Mi;bnd;c þ
X

j

Mi;j;bnd;r

 !
Ri�1 �sui

; cui
; 0

� �T
(28)

Mi;el ¼
Miþ1;bnd �Mi;bnd i < n
�Mi;bnd i ¼ n

�
(29)

4.3 Gravitational Effects. The gravitational force Fi,gr

applied at each disk’s center-of-mass is defined in Eq. (30), where
g is the gravitational constant.

Fi;gr ¼ �mi gx0 (30)

4.4 Actuation Loading: Contact Forces. Actuation loading
accounts for the force and moment on each disk due to the axial
force in each rod. In addition, the contact forces between disks
and rods result in friction. The resulting forces on the disks are
reformulated as a resultant force and moment at the disk center-
of-mass.

The actuation forces applied may be considered as end forces
and contact forces, as shown in Fig. 5. The end force Fj,end is
applied at the nth disk where actuation rod j terminates and

Fig. 4 Illustration of the radius offset for a case when u 5 0

Fig. 5 (a) 2D projection of a single-segment rod-driven manip-
ulator with the upper rod in tension and the two lower rods pas-
sive (zero axial force). (b) Free-body diagram of the rod under
consideration with the applied force from the actuator, the end
force from the rod’s rigid connection to the end disk, and the
contact forces parallel to the disks, normal to the rod and
applied at the disk locations.
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connects, defined in Eq. (31), where Tj,end is the axial force at the
end of rod j and zn is the vector tangent to disk n. In the absence of
friction, this force is calculable directly from the axial force input
and robot geometry; with friction, this is no longer true.

Fj;end ¼ �Tj;endzn (31)

The coupling of each rod’s axial and the frictional forces com-
plicates analysis. To compute each disk’s friction, the contact
force is needed. However, to compute the disks’ contact forces,
the friction forces are needed. Therefore, an iterative approach is
used to converge on correct values. The starting point assumes the
axial force is constant along the rod. From here, the contact forces
are estimated for each rod. These contact force estimates are then
used to calculate the frictional force at each disk. With these
frictional forces, the end force will be updated, and the contact
forces will be recalculated. Section 6 includes analysis on the
“convergence” of the subsegment contact forces based on the iter-
ations of this process and will determine the appropriate iteration
count to ensure accurate computation in minimal steps.

The intermediate disk contact forces are calculated from the in-
stantaneous static equilibrium of each actuation rod. It is assumed
the dynamic effects of the rod’s mass are negligible. Numerical
optimization is used to determine the contact force magnitudes
along the segment(s). A vector of the contact force magnitudes
fi,j,C for the i intermediate disk-rod contacts on rod j is the optimi-
zation’s input. The net equilibrium force fj,eq is due to the summa-
tion of the contact and end forces, shown in Eq. (32), where Tj,base

is the axial force applied at the base and f̂i;j;C is the direction of the
contact force on rod j at disk i. The net equilibrium moment mj,eq

is calculated relative to the base of the rod, shown in Eq. (33),
where pi;j;rod is the rod-disk contact point position of the ith disk
relative to the base of the rod. The rod j objective function Fj,obj is
the sum of squares resulting from fj,eq and mj,eq, defined in
Eq. (34). This model assumes the calculation of at least three con-
tact forces will be required. Furthermore, as the number of contact
forces increases beyond the number of terms contributing to the
sum of squares, the null-space of the solution will increase, possi-
bly enabling different sets of contact force magnitudes to mini-
mize the objective function.

f j;eq ¼ Tj;basez0 þ
Xn�1

i¼1

fi;j;C f̂i;j;C

� �
� Tj;endzn (32)

mj;eq ¼
Xn�1

i¼1

pi;j;rod � fi;j;C f̂i;j;C

� �
� pn;j;rod � Tj;endzn

� �
(33)

Fj;obj ¼ mT
j;eqmj;eq þ f T

j;eq f j;eq (34)

This null-space stems from the fact that the rod geometry is
prescribed by the robot geometry, and the contact forces are calcu-
lated based on that geometry. In other nondeterministic static
equilibrium calculations with a greater number of forces calcu-
lated than the number of equations of motion, a constitutive model
is used to relate displacement to force, and the coupled forces and
displacements are calculated. However, in this case, the displace-
ments are specified, and the forces are calculated. In theory, a rod
model could be generated with both the core and rod subsegment
curvatures as coordinate variables, with compatibility conditions
applied between the rods and cables, and coupled solutions of the
rod forces and displacements. However, from a practical stand-
point, this would significantly increase the number of coordinate
variables in the model (for the robot in Fig. 1, the number of
coordinates would jump from 16 to 72), likely making the
solution intractable. Based on the cross-validation in Sec. 6, the
optimization-based approach provides an acceptable level of
accuracy. While this solution may depend on the initial condition
of the optimization-based solver, by using this initial condition
consistently during a dynamic simulation, the solution’s

consistency will be maintained and will continue to drive the solu-
tion toward the known steady-state configuration.

The contact force directions f̂i;j;C are calculated at each disk
from the bending plane angle of the subsegment after the disk,
shown in Eq. (35). The rod-disk contact point positions pi,j,rod are
found using Eqs. (36) and (37), where ri,j,hl is the vector from the
disk i origin to the rod j routing hole defined with respect to the
base frame.

f̂i;j;C ¼ Ri cuiþ1
suiþ1

0
� �T

(35)

ri;j;hl ¼ Rirj;hl;lcl (36)

pi;j;rod ¼ pi þ ri;j;hl � rj;hl;lcl (37)

Based on the model formulation, the contact force magnitudes
that minimize Fobj equal the contact forces applied by the rod on
the robot. Due to this, the actuation effects Fi,act and Mi,act may be
calculated using Eqs. (38) and (39). Because the contact forces are
parallel to the disk for i< n, the actuation moment on each disk is
zero. However, when friction is considered in Sec. 4.4, there will
be a contribution to the disk’s actuation moment.

Fi;act ¼

X
j

fi;j;C f̂i;j;C i < nX
j

Fj;end i ¼ n

8>><
>>: (38)

Mi;act ¼
0 i < nX

j

ri;j;hl � Fj;end

� �
i ¼ n

8<
: (39)

4.5 Actuation Loading: Sliding Friction. The sliding fric-
tion arising from the disk-rod contact is calculable from the con-
tact forces found in Sec. 4.3. However, the frictional forces will
change the Tj,end used to calculate those forces. An iterative
approach is used to converge on the correct contact forces and
friction. Static friction when the sliding velocity equals zero is
neglected in the dynamic model for this first-stage work due to the
difficulty in scaling the sliding velocity zero crossing detection for
the numerous rod-disk contacts (e.g., 21 contact points for an
eight-disk, single segment robot).

The conventional sliding friction model assumes friction fi,j,fr is
proportional to the contact force and opposes the sliding motion,
defined in Eq. (40), where l is the coefficient of sliding friction
and _di;j;dsk is the sliding velocity between the rod and disk.

f i;j;fr ¼ l fi;j;Czi � sgn _di;j;dsk

� �
(40)

Based on the friction force magnitudes in Eq. (40), the end axial
force Tj;end for each rod j is adjusted as shown in Eq. (41). The
friction opposes the rod’s motion: when pulled, the friction will
reduce the axial force, and when pushed, the friction will increase
the axial force.

Tj;end ¼ Tj;base �
X

i

lfi;j;Csgn _di;j;dsk

� �
(41)

The sliding velocity _di;j;dsk is calculable from the robot kinematics.
The length Li,j of the ith subsegment of rod j and its derivative _Li;j

are calculated using Eqs. (42) and (43). The sum of these rod subseg-
ments velocities from a chosen disk to the rod’s termination disk
results in the chosen disk’s rod sliding velocity, shown in Eq. (44).

Li;j ¼ kiL0=ki;j (42)

_Li;j ¼ L0 ki;j
_ki � ki

_ki;j

� �
=k2

i;j (43)

_di;j;dsk ¼
0 i ¼ nXn

k¼iþ1

_Lk;j; i < n

8<
: (44)
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Because the sliding friction model always opposes motion, the
calculated friction is discontinuous when the velocity crosses
zero. In this model, this discontinuity will cause an abrupt change
in the loading on the disks, resulting in destabilization of the
model. Therefore, a saturation function is used in place of the
signum function to ensure friction remains continuous around
the zero sliding velocity, as defined in Eq. (45), where _dsat is the
saturation threshold velocity. A value of 0.05 m/s is used for the
saturation velocity in this simulation.

sat _di;j;dsk

� �
¼

_di;j;dsk= _dsat
_di;j;dsk



 

 � _dsat

sgn _di;j;dsk

� �
_di;j;dsk



 

 > _dsat

(
(45)

For the static model, there is no sliding motion. Therefore, the
direction of the motion from an initial reference configuration to
the static equilibrium position may be used to determine the direc-
tion of friction. Equation (46) defines the rod displacement di;j;dsk

for each rod j at disk i, assuming the rod moves from the zero-
curvature (straight) configuration. As a result, for the static model,
sgnð _di;j;dskÞ ¼ sgnðdi;j;dskÞ.

di;j;dsk ¼
0 i ¼ n

n� ið ÞL0 �
Xn

k¼iþ1

Lk;j i < n

8<
: (46)

The friction will also impact the calculation of the contact force
magnitudes, due to the additional force effects on the rods during
the calculation of their equilibrium. Equations (47) and (48) show
the modification to Eqs. (32) and (33) due to friction.

f j;eq ¼ Tj;basez0 þ
Xn�1

i¼1

fi;j;C f̂i;j;C þ f i;j;fr

� �
� Tj;endzn (47)

mj;eq¼
Xn�1

i¼1

pi;j;rod� fi;j;C f̂i;j;Cþ f i;j;fr

� �� �
�pn;j;rod� Tj;endzn

� �
(48)

The resulting frictional forces will modify the force and
moment loading on the robot by the rods. The new actuation force
and moment are defined in Eqs. (49) and (50), respectively.

Fi;act ¼

X
j

fi;j;Cf̂i;j;C þ f i;j;fr

� �
i < nX

j

Fj;end i ¼ n

8>><
>>: (49)

Mi;act ¼

X
j

ri;j;hl � f i;j;fr

� �
i < nX

j

ri;j;hl � Fj;end

� �
i ¼ n

8>><
>>: (50)

5 Multisegment Mechanics

In this section, the previous single-segment analyses for contin-
uum robot modeling using the principle of virtual power is adapted
for use in modeling multisegment robots. A key benefit of the cho-
sen virtual power modeling method is the ease of scaling the model
from a single-segment model to a multisegment model. The pri-
mary challenge is in the calculation of contact forces: instead of
each rod interacting with each disk, different rods will have differ-
ent numbers of contact points. Slight modifications to the calcula-
tion of inertial, elastic and gravitational loading are also necessary.

Before considering the mechanics of the multisegment manipu-
lator, a systematic method of defining the structure in terms of its
multiple segments is needed. As in the single-segment case, the
model input is a vector of rod axial forces T arranged in two tiers:
first by segment termination, then by counterclockwise position,
as shown in Fig. 6. For the structure in Fig. 1, the input vector T is
defined by Eq. (51), where T2�1 is the first rod terminating in the
second segment. The local positions ri� j,hl,lcl of the holes in the
disk may be found for an N-segment manipulator with 3 rods per
segment using Eq. (52) for the jth rod of the ith segment.

T ¼ T1�1 T1�2 T1�3 T2�1 T2�2 T2�3½ �T (51)

ri�j;hl;lcl ¼ rh cai�j
; sai�j

; 0
� �

T ;
ai�j ¼ 2p i� 1ð Þ=3N þ 2p j� 1ð Þ=3

(52)

For each segment, it is possible to define independent material
(e.g., Young’s modulus, density, etc.) and geometric (e.g., disk spac-
ing, core diameter, etc.) properties. However, for this work it is
assumed that properties are homogeneous along each segment (with
the exception of the actuation transmission rods terminating at differ-
ent disks). Given N segments and n subsegments per segment, the
variable s is the product s ¼ N � n. The kinematics will be calculated
as before, moving forward recursively from the base to the tip.

Fig. 6 Assignment of tension input variables to actuation
transmission rods for a two-segment continuum robot with
three rods per segment

Table 1 Material and geometric properties of the experimental prototype. “P” denotes proximal segment and “D” denotes distal
segment.

Property Value Property Value Property Value

mi Mass P: 2.869�10�3 Ixx,lcl Radial moment of
inertia

P: 7.690�10�6 Izz,lcl Axial moment of inertia P: 3.531�10�7

D: 2.269�10�3

(kg)
D: 3.894�10�6

(kg�m2)
D: 2.593�10�7

(kg�m2)
Jxx,c Core second

moment of area
5.743�10�14 (m4) Jxx,r Rod second moment

of area
5.743�10�14 (m4) L0 Subsegment length (disk

spacing)
30 (mm)

Ec Core Young’s
modulus

2.100�1011 (Pa) Er Rod Young’s
modulus

2.100�1011 (Pa) g Gravitational acceleration 9.81 (m/s2)

rh Routing hole radius 12.5 (mm) l Coefficient of friction 0.3 _dsat Velocity saturation limit 0.05 (m/s)
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The calculation of the inertial, gravitational and elastic loading
will be changed due to the variable number of rods in each sub-
segment between different sections. The bodies’ masses and
moments of inertia in the proximal segment are greater than those
in the distal segment, due to the presence of six rods versus three.
This requires a segment-by-segment calculation of inertial proper-
ties. Likewise, this will also impact the rod’s elasticity. Six rods
will contribute to the rods’ elastic loading in the proximal seg-
ment, compared to three rods in the distal segment.

For actuation loading, the variable presence of the actuation
transmission rods along the robot significantly impacts the loading
in each segment. Specifically, the actuation rods that route
through intermediate segments to their final segment will generate
contact forces on the disks within these intermediate segments in
addition to the rods that terminate in that segment. The contact
force weighting for each rod will found independently for each
rod. For example, in the two-segment, eight disk robot under con-
sideration, for the first three rods, contact force magnitudes will
be found for the rods’ contacts with disks 1–3, and for the second
three rods, contact force magnitudes will be found for the rods’
contacts with disks 1–7.

6 Numerical Simulations and Cross-Validation

In this section, the virtual power continuum robot statics and
dynamics models are implemented in MATLAB and case studies are
presented to validate the model, including comparisons to
dynamic FEA and experimental results.

6.1 Static and Dynamic Models. Static and dynamic models
have been implemented in MATLAB using the “fsolve” function for
the static model and the “ode45” function for the dynamic model.
For the static model, the inertial effects Fi,inr and Mi,inr equal zero
and the governing equation DP¼ 0 is solved as a set of coupled
algebraic equations.

To improve the convergence of the static model, a two-step
solution process is programmed. First, the static model is solved
for without contact forces, incorporating gravitational effects,
elastic effects, and the end force actuation effects. This intermedi-
ate solution is then used as the initial condition for the full static
model including contact forces and friction.

For the dynamic model, the inclusion of inertial effects results
in a set of coupled second-order ODEs in time. In order to solve
these equations using MATLAB, the equations must be re-organized
into the form shown in Eq. (53), where Mwgt q; _qð Þ is the weighting
matrix and Vwgt q; _qð Þ is the forcing vector.

Mwgt €q ¼ Vwgt (53)

To cast the equations in this form, the angular and linear accel-
erations are reformulated, taking the derivative of Eq. (2), result-
ing in Eq. (54). As a result, the inertial forces and moments take
the form shown in Eq. (55).

ai ¼
X

k

_xi;k _qk þ xi;k €qk

� �
; ai ¼

P
k _vi;k _qk þ vi;k €qk

� �
(54)

Mi;inr ¼ �Iixi;k €qk � Ii _xi;k _qk � xi � Iixi;

Fi;inr ¼ �mivi;k €qk � mi _vi;k _qk

(55)

With this new formulation for the inertial effects, the exter-
nal forces and moments that will contribute to the weighting
matrix (Mi,ex:m and Fi,ex:m) and the forcing vector (Mi,ex:v and
Fi,ex:v) may be calculated as in Eq. (56). With these, Mwgt and
Vwgt may be calculated using Eq. (4), as shown in Eq. (57). In
addition, because “ode45” requires the ODEs as a single-order
system, the second-order ODEs must be recast into the form
shown in Eq. (58), where X ¼ qT _qT

� �
T and I is the identity

matrix.

Mi;ex:m ¼ Iixi;k; Fi;ex:m ¼ mivi;k ;

Mi;ex:v ¼ �Ii _xi;k _qk � xi � Iixi þMi;el þMi;act;

Fi;ex:v ¼ �mi _vi;k _qk þ Fi;gr þ Fi;act

(56)

Mwgt ¼
X

i

xi;k �Mi;ex:m þ vi;k � Fi;ex:m

� �
Vwgt ¼

X
i

xi;k �Mi;ex:v þ vi;k � Fi;ex:v

� � (57)

I 0
0 Mwgt

� �
_X ¼ _q

Vwgt

� �
(58)

In both models there is a need to solve for the contact forces
magnitudes, as discussed in Sec. 4.3. MATLAB’s “lsqnonlin” func-
tion is used to solve the optimization presented in that section.
Use of “lsqnonlin” is permissible because the objective function
Fobj is a sum of square terms. To improve convergence, in addi-
tion to the calculation of fj,eq and mj,eq for the objective function,
the Jacobian of these terms with respect to the contact force mag-
nitudes is provided. The ith column of the objective function vec-
tor Jacobian Jj,obj is defined in Eq. (59). To improve convergence,
in cases where planar actuation is prescribed by the input axial
forces, the second, fourth and sixth terms are ignored and the sum
of squares and Jacobian will depend only on the x- and z-forces
and y-moment.

Jj;obj : ;ið Þ ¼ f̂ T
i;C; pi;j;rod � f̂i;C

� �
T

h i
T (59)

For the simulations in the following sections, two sets of initial
conditions are used. For the zero-actuation case study, the initial
bi is �0.001 m�1 and the initial ci is 0 to avoid the singularity in
the calculation of pi,lcl and its derivatives when bi¼ ci¼ ki¼ 0.
For the actuated simulations, the initial condition is the continuum
robot’s zero actuation static equilibrium. For all case studies,
the robot has the material and geometric properties detailed in
Table 1.

6.2 Frictional Force Iteration Validation. As discussed in
Secs. 4.3 and 4.4, the contact and friction forces calculations are
coupled. An algorithm was provided capable of sequentially cal-
culating the properties; however, the minimal number of iterations
to be performed is required. Based on prototype construction for
the experimental validation, a maximum axial force of 30 N was
set for the simulations and experiments.

Figure 7 shows the convergence of the contact force magni-
tudes in two cases: (1) planar actuation of the proximal segment
with T1,1¼ 30 N and (2) planar actuation of the whole robot with
T2,2¼ 30 N. During preliminary simulations, planar actuation was
found to converge in more steps than spatial actuation because of
the fewer degrees of freedom present for the optimization (three
terms in the objective function versus six) of the contact force
magnitudes. Furthermore, during preliminary simulations, it was
found that the convergence rate increases as the force magnitude

Fig. 7 Convergence of contact force magnitudes for a two seg-
ment, eight-disk continuum robot. (a) T1,1 actuated with 30 N
(rod connects at disk 4). (b) T2,2 actuated with 30 N (rod con-
nects at disk 8).
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increases. Table 2 shows the maximum percent error at each iter-
ation of the contact force magnitude relative to the final result at
iteration 10 for the two cases. While the segment 2 simulation
has higher initial error, it more quickly converges to the final
contact force. Therefore, the segment 1 modeling dictates the
minimum number of iterations. As seen in Table 2, six iterations
results in a solution with less than a 1% difference from the final
value. Therefore, in all simulations, six iterations will be
utilized.

6.3 Dynamic Responses. Dynamic simulations were gener-
ated using the virtual power model for three case studies: (1) zero
actuation in the rods, (2) rod 1-1 actuated with a 10 N tension, and
(3) rod 2-2 actuated with a 10 N tension. Figure 8 illustrates the
dynamic response of the b curvatures of the continuum robot’s
subsegments with zero axial force in the rods. The simulation
results in sustained oscillations of the continuum robot’s curva-
tures around a stable point. Because the axial forces are all zero,
there is no contact force between the rods and disks, resulting in
zero friction along the arm. In this case, the rod’s bending is due
to the moment applied by the terminal disk and transmitted
along the rod. The elastic effects of these passive rods are then
incorporated into the Mi,el term. Because sliding friction due to
the contact forces is the only dissipative force in the model, the
vibrations are not dampened and remain sustained over the
interval.

Figure 9 illustrates the dynamic response of the robot with rod
1-1 (Fig. 6, the first rod that terminates in the first segment) actu-
ated with a tension of 10 N. Because the actuation remains in-
plane, only the b curvatures are nonzero. In addition, due to the
contact forces between the actuation rods and the disks, friction
dampens the responses. Because rod 1-1 terminates at disk 4, only

subsegments 1–4 will have appreciably different steady-state cur-
vature values. However, all subsegments experience vibration
attenuation. For segment 1, this is due to the contact friction
between rod 1-1 and the disks adjacent to its subsegments. How-
ever, for segment 2, the dissipation is “indirect” due to the internal
force loading of segment 1 on segment 2. When the segment 2
internal forces and moments are applied to segment 1, the fric-
tional force will oppose the resulting motion. This frictional oppo-
sition results in reduction of the internal forces and moments,
which results in reduced vibrations in segment 2.

The actuation of the segment 2 rods results in deformation
along the entire robot, due to their routing through the proximal
segment 1. Figure 10 illustrates the dynamic response of the con-
tinuum robot with rod 2-2 (Fig. 6, the second rod that terminates
in the second segment) actuated with a tension of 10 N (same as
the segment 1 dynamic response) from the initial condition of the
zero actuation static equilibrium.

6.4 Static Versus Dynamic Virtual Power Model
Comparison. As an initial point of comparison, the steady-state
component of the dynamic virtual power model response (i.e., the
constant values of the response around which the transient
response oscillates) can be compared to the equilibrium configura-
tion calculated by the static virtual power model. Figure 11 com-
pares these for a 10 N tension in rod 1-1. As shown, they are
nearly identical. The maximum position error is 0.2939% in disk
8, enabling interchangeable use of the static equilibrium model
for the steady-state component of the dynamic response.

Figure 12 compares the dynamic model steady-state response to
the static model equilibrium for actuation of rod 2-2 with 10 N
tension. Although there is slightly more variation between these
two configurations than in Fig. 11, the maximum error in disk 8

Table 2 Maximum contact force magnitude error for each iteration for static simulations with T1,1 5 30 N or T2,2 5 30 N

Iter. Error (%) Iter. Error (%) Iter. Error (%)

1 T1,1: 27.9 T2,2: 37.8 4 T1,1: 2.21� 10�1 T2,2: 8.96� 10�3 7 T1,1: 1.68� 10�3 T2,2: 8.42� 10�8

2 T1,1: 5.71 T2,2: 3.91 5 T1,1: 4.34� 10�2 T2,2: 2.13� 10�4 8 T1,1: 3.16� 10�4 T2,2: 2.24� 10�8

3 T1,1: 1.12 T2,2: 2.32� 10�1 6 T1,1: 8.50� 10�3 T2,2: 2.76� 10�6 9 T1,1: 7.71� 10�5 T2,2: 2.20� 10�9

Fig. 8 Zero actuation virtual power dynamic model response b
curvatures. These curvature profile correspond to tip oscilla-
tions with peak-to-peak amplitude of 9.48 mm around
x 5 24.74 mm.

Fig. 9 Rod 1-1 actuation (10 N) dynamic virtual power model b
curvature responses
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position is still 2.2165%, or 5.3 mm. Table 3 provides the error of
the steady-state dynamic response component relative to the static
equilibrium. In addition, it is seen that for identical tension inputs,
the segment 2 rods will cause greater overall deflection.

6.5 Finite Element Analysis Validation of Virtual Power
Model. Two properties of the zero actuation dynamic response
shown in Fig. 8 have been analyzed: the magnitude of the steady-
state component and the frequency response of the transient com-
ponent. Figure 13 compares the dynamic response’s steady-state
component to: (1) the static virtual power model equilibrium, and
(2) the equilibrium of a static FEA model of the continuum robot.
This FEA model was generated using COMSOL’s Structural
Mechanics model using the geometric and material properties
detailed in Table 1. A 3D linear elasticity material model was
chosen, and the geometry was discretized using a “Fine” mesh. As
shown in Fig. 13, the three plots are practically superimposed on
one another. The maximum disk position error for both the
dynamic response steady-state component and the static equilib-
rium model relative to the FEA simulation is 0.2958%.

The frequency response of the virtual power dynamic response
was compared to a dynamic FEA simulation in COMSOL. A fast
Fourier transform using MATLAB was performed on the oscillations
of the x-components of displacement of the disks’ centers-of-mass
to quantify the frequency response. For the dynamic virtual power
model, the curvature responses illustrated in Fig. 8 were mapped
into disk trajectories, based on the kinematic analysis in Sec. 3.

Figure 14 illustrates the frequency responses of the first and
eighth disk in the robot. As illustrated, the frequency response
profiles’ shapes between the two disks’ oscillations are similar
and differ primarily in their magnitudes. However, there is a slight
difference in the peak frequency of the first mode: the FEA simu-
lation exhibits a greater fundamental frequency (9.76 Hz) than the
virtual power model (7.81 Hz). This is primarily due to the differ-
ence in discretization between the two models: the dynamic vir-
tual power model is defined by 32 variables, whereas the FEA
uses a model composed of 6964 elements. In addition, the model
discretization makes several assumptions for model simplicity
that change the mass properties of the robot. The first half of the
core and rods in subsegment 1 are not explicitly modeled, due to

Fig. 10 Rod 2-2 actuation (10 N) dynamic virtual power model
b curvature responses

Fig. 11 Comparison of the calculated static virtual power
model equilibrium to the steady-state component of the
dynamic virtual power model response for actuation of 10 N in
rod 1-1

Fig. 12 Comparison of the calculated static virtual power
model equilibrium to the steady-state component of the
dynamic virtual power model response for actuation of 10 N in
rod 2-2

Table 3 Percent error of dynamic response steady-state com-
ponent relative to static equilibrium for actuation of 10 N in rod
2-2

Disk Error (%) Disk Error (%) Disk Error (%)

1 0.0735 4 0.2448 7 1.5957
2 0.0684 5 0.5221 8 2.2165
3 0.0502 6 0.9805 — —

Fig. 13 Comparisons of the zero actuation dynamic virtual
power model response steady-state component to the calcu-
lated equilibria using the static virtual power model and the
static finite element analysis model

Fig. 14 Comparison of frequency response of vertical dis-
placements of (a) disk 1 and (b) disk 8 from VP and FEA
simulations
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the lumping of these masses elsewhere with their immediately sur-
rounding disks. On the other hand, at disk 4, the mass properties
are assumed to be the same as the three previous disks, but one tri-
plet of rods does not continue past disk 4. Likewise, at disk 8,
rods are modeled as continuing beyond the disk, when in actuality
they do not. The redistribution of this mass would have an effect
on the dynamic properties of the robot and likely contributes to
this error.

6.6 Experimental Validation of Virtual Power Model.
Experimental validation is used to verify the accuracy of the actuated
case studies of the virtual power model. Figure 15 shows the experi-
mental test platform utilized. A spring steel core (ASTM A228,
1.04 mm diameter, 240 mm long) was used with eight disks (ABS
plastic, 30 mm diameter, 2 mm thick, 30 mm disk spacing) mounted
along the core using cyanoacrylate (Loctite 401). The actuation rods
are also spring steel (ASTM A228, 1.04 mm diameter), route through
holes in the disk of 1.75 mm diameter, and terminate and are con-
nected to the fourth or eighth disk using the above cyanoacrylate.
Hanging weights are used to tension the rods, with an adapter
mounted on the rod with polytetrafluoroethylene-coated fiberglass
thread tied on and routed over a spool supported by ball bearings.
The actuation rods were routed through the disks offset 12.5 mm
from the center (Fig. 2 shows the arrangement). The properties of
this prototype match the properties used in the numerical models
shown in Table 1.

The shape was measured by photographing the disks in profile, then
indirectly calculating the curvature from the relative angle between the
two disks adjacent to each subsegment. The bending plane angle hi

was found for each subsegment by subtracting the two adjacent disks’
angles, and the subsegment curvature was found by dividing hi by L0.
The error of this image processing step was estimated by determining
the angle of gradations on a protractor, then determining the associated
curvature for each given difference in angle. This was compared to the
predicted curvature for the known difference in angle. The maximum
curvature error was found to be 1.637%.

Figure 16 compares the experimentally measured continuum
robot static equilibria to the calculated static equilibria from the
virtual power model for tensions of 10, 20, and 30 N applied to
rod 1-1. In each case, a pattern is observed where for each tension,

the experimental results exhibit greater curvature in subsegment 1
than the virtual power simulation, reduced curvature in subseg-
ment 2 compared to the virtual power simulation, and similar cur-
vatures for subsegments 3 and 4, as shown in Fig. 17. This is due
primarily to the assumption in the model that the actuation rods
are held horizontal at the base of the robot. In the experimental
prototype, the clearance between the routing holes for the rods
allows for slight variation from horizontal. As a result, the elastic
loading in the model is greater than the actual elastic loading in
the prototype. This could be compensated for by adjusting the
assumed boundary condition of the model at the base of the robot;
this and other improvements to the model based on prototype con-
struction will be discussed in Sec. 7. However, even with this
slight discrepancy, the errors of the modeled positions of the disks
relative to the experimental results are all still less than 5%, with a
maximum error of 4.89% occurring in disk 8 for the 30 N case.

Figure 18 compares the experimentally measured static equili-
bria to the calculated static equilibria from the virtual power
model for tensions of 5, 10, and 15 N in rod 2-2. As seen in
Fig. 16, the reduced elastic moment generated in subsegment 1
seen in the experimental prototype causes the measured configura-
tion to consistently extend beyond the predicted shape. The maxi-
mum disk position error of 5.53% is seen in disk 8 for the 10 N
actuation case.

The mutual actuation of rods 1-1 and 2-2 results allows for the
quasi-independent control of these two segments. To validate this
model, the impact of segment 2 loading on a robot with fixed seg-
ment 1 loading was considered. Rod 1-1 was tensioned with 25 N,
and the tension in rod 2-2 was varied from 5 N to 15 N. Because
of the previously demonstrated correlation between the steady-
state component of the dynamic responses and the static equili-
bria, the static models are directly compared to the experimental
results generated for the previously described loading conditions.
Figure 19 illustrates the resulting experimental results and calcu-
lated static equilibria for the loading described above. The maxi-
mum error occurs of 8.02% occurs in disk 7 of the 5 N actuation
case.

The neglect of torsion in this model leads to out-of-plane actua-
tion cases being very similar to the planar cases. As discussed in

Fig. 15 Rod-driven, two-segment prototype used for validating
actuated case studies

Fig. 16 Comparison of the experimentally measured static
equilibrium and the calculated static virtual power model equi-
librium for tensions of 10, 20, and 30 N in rod 1-1

Fig. 17 Comparison of b curvatures for subsegments 1–4 for
the experimentally measured static equilibrium and the calcu-
lated static virtual power model equilibrium for 30 N tension in
rod 1-1

Fig. 18 Comparison of the experimentally measured static
equilibrium and the calculated static virtual power model equi-
librium for tensions of 5, 10, and 15 N in rod 2-2
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Sec. 7, in future work with larger and longer continuum robots,
the impact on torsion of out-of-plane loading will be studied and
accounted for in the virtual power model.

In addition, experimental validation of the transient behavior of
the dynamic model is also an element of the future work due to
the dependence of the continuum robot prototype’s dynamic
response on the actuation mechanism. In the current model, step
functions are used to apply constant tension forces to the rods.
However, the system inputs for an experimental prototype would
likely be displacement set points for linear actuators driving the
rods. As a result, the force profiles applied by these linear actua-
tors would be significantly different than step functions. Experi-
mental validation of the transient continuum robot response will
be a key element of verifying the accuracy of the integrated actua-
tion mechanism and continuum robot model.

7 Conclusion

This paper presented a novel approach using the principle of
virtual power to model the mechanics of rod-driven continuum
robots, with considerations for both multisegment structures and
friction between the actuation rods and disks. The resulting static
equilibrium model was a series of coupled algebraic equations ca-
pable of being solved numerically, and the resulting dynamic
response model was a set of weighted ordinary differential equa-
tions capable of being numerically integrated. The modeling
approach was validated by comparing the simulated zero actua-
tion, in-plane actuation and out-of-plane actuation dynamic
responses to the static virtual power model, dynamic FEA and
experimental results.

Future work associated with this topic includes studies into
quantifying and improving numerical model efficiency, improv-
ing the mechanics model, and applying the model for task plan-
ning and control. In terms of improving numerical efficiency, the
key first step will be to implement the model in a lower-level
language than MATLAB m-code, such as C. Then, other dynamic
models would need to be implemented in a similar fashion and
their performance compared. In terms of improvements to the
mechanics model, the next key step is incorporating torsional
effects into the rod-driven model to account for the “twist” due
to out-of-plane loading from gravitational effects in large-scale
continuum robots. In addition, robot-specific adjustments and
improvements to the model will need to be considered, such as
(1) modeling the mechanics of an actuation module to enable
mapping between the robot’s actual control inputs (e.g., linear
actuator displacement or motor torque) and the resulting shape,
or (2) including local perturbations in boundary conditions due
to tolerances in construction (e.g., the segment 1 elasticity modi-
fication discussed in Sec. 6.3). Third, an alternative approach for
incorporating the rod elasticity will be considered in which the
rod elasticity is included in the rod equilibrium calculation, and
its effect on the continuum robot shape will be applied through
the contact forces.

In terms of task planning, we aim to formulate methods of
inverse dynamics in which the intrinsic coupling between configu-
ration (kinematics) and forces (kinetics) is accounted for. Unlike
conventional rigid-structure robots, the joint-angle profiles may
not be calculated separately from the joint torques required to
realize them: they are intrinsically coupled. In terms of control,
we aim to apply the virtual power method of mechanics modeling
into a predictive controller capable of improving the stability of
continuum arms by accounting for the vibrational modes of the
structure. In addition, the discretization of this representation will
enable better control of manipulator contact, particularly deforma-
tion around obstacles. Because each actuated segment it not
required to exhibit a single mode shape in response to loading,
more complex shapes may be adopted in response to environmen-
tal contact.
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Nomenclature

ai ¼ disk i center-of-mass linear acceleration
bi,lcl ¼ frame i local binormal vector relative to frame i � 1

c ¼ cosine (angle given as subscript)
di,j,dsk ¼ rod displacement through hole j of disk i

_dsat ¼ threshold sliding velocity for saturation function
Ec ¼ elastic core Young’s modulus
Er ¼ actuation rod Young’s modulus

fi,j,C ¼ contact force magnitude at disk i for rod j
fi,j,C ¼ contact force at disk i for rod j
fi,j,fr ¼ friction force at hole j on disk i
fj,eq ¼ net equilibrium force on rod j

Fi,act ¼ disk i actuation force
Fi,ex ¼ disk i total external force

Fi,ex:m ¼ matrix component of disk i total external force
Fi,ex:v ¼ vector component of disk i total external force

Fi,gr ¼ disk i gravitational force
Fi,inr ¼ disk i inertial force

Fj,end ¼ force applied by rod j on terminating disk
Fj,obj ¼ objective function for rod j static equilibrium

optimization
g ¼ gravitational constant
I ¼ identity matrix
Ii ¼ disk i global moment of inertia

Ii,lcl ¼ disk i local moment of inertia
Ii,xx,lcl ¼ disk i radial moment of inertia aligned with ni,lcl axis
Ii,yy,lcl ¼ disk i radial moment of inertia aligned with bi,lcl axis
Ii,zz,lcl ¼ disk i axial moment of inertia aligned with ti,lcl axis
Jj,obj ¼ objective function vector Jacobian
Jxx,c ¼ elastic core cross section second moment of area
Jxx,r ¼ actuation rod cross section second moment of area

ki ¼ subsegment i curvature magnitude
ki,j ¼ curvature magnitude of rod j in subsegment i
Li,j ¼ length of subsegment i rod j
L0 ¼ spacing between disks
mi ¼ disk i mass

Mi,act ¼ disk i actuation moment
Mi,bnd ¼ subsegment i bending moment

Mi,bnd,c ¼ subsegment i core bending moment magnitude
Mi,el ¼ disk i elastic moment
Mi,ex ¼ disk i total external moment

Mi,ex:m ¼ matrix component of disk i total external moment
Mi,ex:v ¼ vector component of disk i total external moment
Mi,inr ¼ disk i inertial moment

Mi,j,bnd,r ¼ subsegment i rod j bending moment magnitude
mj,eq ¼ net moment of rod j relative to base
Mwgt ¼ weighting matrix for second-order ODE model
ni,lcl ¼ frame i local normal vector relative to frame i � 1

Fig. 19 Comparison of the experimentally measured static
equilibrium and the calculated static virtual power model equi-
librium for a tension of 25 N in rod 1-1 and tensions of 5, 10, and
15 N in rod 2-2
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P ¼ total virtual power
pi ¼ disk i center of mass position vector relative to origin

of base frame
pi,j,rod ¼ disk i hole j position vector relative to origin of base

frame
pi,lcl ¼ disk i center of mass local position vector relative to

origin of frame i � 1
qi,lcl ¼ subsegment i coordinates
qk, q ¼ generalized coordinates

rh ¼ rod routing hole distance from disk origin
Ri ¼ frame i orientation relative to base frame

ri,j,hl ¼ position vector from disk i origin to hole j defined
with respect to base frame

ri � j,hl,lcl ¼ segment i rod j local hole position vector
Ri,lcl ¼ frame i local orientation relative to frame i � 1

rj,hl,lcl ¼ rod j local hole position vector
s ¼ sine (angle given as subscript)
T ¼ input tension vector

ti,lcl ¼ frame i local tangent vector relative to frame i � 1
Ti � j ¼ input tension for rod j terminating in segment i
Tj,base ¼ axial force applied at base of rod j
Tj,end ¼ axial force of rod j at terminating disk

vi ¼ disk i center-of-mass linear velocity
vi,k ¼ disk i center-of-mass partial linear velocity for gener-

alized coordinate k
Vwgt ¼ forcing vector for second-order ODE model

X ¼ state vector of generalized coordinates and velocities
x̂ ¼ denotes unit vector

_x; €x ¼ denotes first, second derivative in time
xi, yi, zi ¼ unit vectors defining global frame

x0, y0, z0 ¼ unit vectors defining base frame
ai ¼ disk i angular acceleration

ai � j ¼ segment i rod j hole position angle
bi ¼ subsegment i x-z plane curvature
ci ¼ subsegment i y-z plane curvature

di,j ¼ radius of curvature offset for rod j in subsegment i
D ¼ variation operator
hi ¼ subsegment bending angle
l ¼ coefficient of sliding friction
ui ¼ subsegment i bending plane angle
xi ¼ disk i angular velocity

xi,k ¼ disk i partial angular velocity for generalized
coordinate k

xi,lcl ¼ disk i local angular velocity relative to frame i � 1
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