Mechatronics 52 (2018) 58-69

Contents lists available at ScienceDirect

Mechatronics

Mechatronics

journal homepage: www.elsevier.com/locate/mechatronics

Novel wireless sensing platform for experimental mapping and validation of = M)

Check for

ship air wake™ LT

Anil Kumar, Pinhas Ben-Tzvi*

Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA

ARTICLE INFO ABSTRACT

This paper presents the mechatronic design and analysis of a wireless sensing platform developed for the ex-
perimental mapping and validation of the air wakes generated by cruising naval vessels. The presented sensing
system uses an RC helicopter as its carrier platform and uses the helicopter's dynamics for spatial 3D mapping of
wind turbulence. In this paper, the proposed telemetry system models the dynamic response of the helicopter to
pilot inputs under artificially generated wind conditions and then uses neural network based models to estimate
the air wake distribution. The telemetry system uses a wireless sensor network comprising of sensors such as an
Inertial Measurement Unit (IMU), optical trackers, and GPS to measure the dynamics of a flying RC helicopter.
The system was trained and calibrated in a climate controlled indoor environment with artificially generated
wind conditions. This paper focuses on both hardware and software aspects of the latest iteration of the tele-
metry system (version 3.0). The presented telemetry system is also tested with a modified YP676 naval training
vessel in the Chesapeake Bay area, under a wide range of wind conditions and the results were compared against
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1. Introduction

The operation of helicopters on naval vessels is a very risky and
challenging task due to ship air wakes and limited flight deck area. Ship
air wake is a trail of air turbulence generated in the lee of the super-
structure of a cruising naval vessel. To minimize these operational risks,
‘safe launch and recovery envelopes’ are prescribed for operating he-
licopters with each class of naval vessel in order to avoid high air wake
zones during take-off and landing [1]. Such safe flight envelops are
often determined with Computational Fluid Dynamics (CFD) models
and/or manual flight testing. Because of the serious naval safety im-
plications of ship air wakes, many navies around the globe have ship air
wake study programs [2-4]. Significant research has been done to de-
velop high-fidelity CFD models to predict air wake patterns [3,5] and
interactions with rotary wing aircraft [6-11]. However, existing CFD
models need extensive experimental data for validation. Manual flight
testing, on the other hand, is not only risky but also highly subjective as
it depends on the pilot's response. Thus, there is a need for an in-
strumentation system capable of measuring ship air wake intensities in
a non-subjective manner. To obtain experimental ship air wake data,
most researchers have pursued either wind tunnel testing or relied on
in-situ wind velocity measurements using anemometers.

1.1. Wind tunnel testing

Wind tunnel testing has been the preliminary and most common
source for ship air measurement in the naval science community. Such
studies often use a scaled-down model of naval vessels in wind tunnel
and measure wind flow field. These types of setups have used a variety
of sensing modalities including laser Doppler anemometry [12], hot
wire based Omniprobe anemometry [3,9] and Particle Image Veloci-
metry [2,10,13]. In a similar study, K&érid et al. immersed a model
helicopter in a water tunnel to validate the aerodynamic interactions of
a helicopter with ship air wakes [11]. The transducers used in these
measurements are very sensitive and expensive, so they can safely be
operated only in controlled environments like wind tunnels. The wind
tunnel testing does provide significant insight into wind flow in ship air
wake zones, but lacks fine details in flow pattern due to scaling issues.
Additionally, both the model holder and the walls of wind tunnel affect
the readings, and their effects must be accounted for in the experi-
mentation.

1.2. In-situ measurements

Use of anemometers is the most common means for in-situ wind
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Fig. 1. (A) Frame of reference assignment for the helicopter's fuselage and rotor blades; (B) Aerodynamic loads on an airfoil section of rotor blade.

pattern measurement. Allotta et al. have recently demonstrated the use
of MEMS sensor based low cost anemometers mounted on a sail boat
mast to measure wind flow for autonomous control of the boat [14].
The sensor gives good temporal resolution but lacks spatial resolution
as it depends on motion and dynamics of the sailboat. However, in a
more reliable approach, the researchers place ultrasonic anemometers
at different locations on the flight deck of naval vessels and compare the
measurements with CFD/wind tunnel testing results [3,12,15-17]. This
methodology does provide accurate wind flow measurements, but
proves to be expensive and time-consuming. The anemometer(s) need
to be moved from point to point to get the complete wind flow field. To
overcome this limitation, Mallon et al. [18] in a similar study used
airborne anemometers mounted on a quadrotor to map ship air wakes.
This approach requires compensation for anemometers’ motion relative
to the inertial frame of reference and, most importantly, is susceptible
to quadrotor's own wind turbulence.

1.3. Proposed use of RC helicopters as a sensing platform

Ship air wakes are critical because they effect the aerodynamic
operation of a helicopter. Wind sensing instruments like anemometers,
Pitot tube, etc., can measure instantaneous wind conditions, but only in
a very small volume. Thus, such instruments cannot capture spatial
variations in wind condition, a characteristic of turbulent flow, espe-
cially from a non-stationary platform. Air wakes result in undesired
swaying and tilting of helicopters due to uneven aerodynamic loading
effects resulting from wind turbulence. Thus, it is advantageous to use
low-cost remotely operated helicopters as a transducer to determine
wind conditions. Due to their low mass, RC helicopters are quite sen-
sitive to ship air wakes. The use of an RC helicopter's in-flight angular
rates to quantify ship air wakes was first proposed by Metzger et al.
[19]. However, this method had limited application, as it ignored the
motion induced by the pilot's inputs to the helicopter [20]. This concept
was gradually extended by Kumar et al. in multiple iterations by
modeling the contribution of pilot inputs to the helicopter's dynamics
[20-24].

1.4. Scientific contributions of this study

In contrast to the previously published work of the authors
[20-22,24], the current paper presents a calibration strategy for the
sensor system through experimental flight testing in a controlled wind
setup. The paper presents the design and analysis of a wireless tele-
metry system intended to simultaneously measure helicopter dynamics,
location and pilot inputs at a high update rate. This paper also presents
a novel mechatronics platform to generate and map reproducible wind
flow conditions in an open indoor environment to calibrate aero-
dynamics of a flying RC helicopter. This paper presents an extended
analysis of the interaction of ship air wakes with a flying RC helicopter
using localized wind flow models. This study also presents an analytical
analysis to identify factors affecting the helicopter’s dynamics and use
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these parameters with an Artificial Neural Networks-Particle Swarm
Optimization (ANN-PSO) based machine learning approach to model
the dynamics of an RC helicopter. Also, this analysis demonstrates
linear mixing of pilot components and local wind components in the
aerodynamics of the helicopter, and then uses the same property to
extract and map wind turbulence.

The main benefit of this telemetry system is its non-contact long-
range mobility, which does not alter the air wake readings due to
physical linkages coupled with ship motion or the formation wakes
arising from mechanical linkages (as in the case of wind tunnels). At the
same time, pilot input compensation features of the system ensure
unbiased ship air wake measurements. The system's capability to ex-
tract ship air wakes is tested in an indoor calibration experiment where
the helicopter was flown in artificially created wind turbulence. In
addition, this paper also models the effect of turbulence from un-
certainty in angular acceleration, which delivers better correlation with
the wind turbulence pattern. The paper also presents the outdoor
testing performance of the system with an YP676 naval patrol craft and
compares against results obtained from CFD analysis in previous stu-
dies.

2. Interaction between helicopter and ship air wakes

As is widely known, helicopter control is realized through thrust
vectoring by using a swash plate mechanism [25]. The swash plate
couples the main rotor rotation and rotor pitch control, thus making the
blade pitch angle a function of the rotor position.

Fig. 1 shows the frame of reference assigned to the helicopter's fu-
selage along with the lift and drag generated by an airfoil section of a
rotor blade. The lift and drag experienced on an airfoil section of a rotor
blade is dependent on the angle of attack of the relative wind, which in
turn depends on wind conditions, pilot inputs, and the helicopter's
motion. To make the role of wind conditions on the helicopter dynamics
apparent, a single blade coordinate system has been followed. Eq. (1)
shows lift () and drag (d) generated by an airfoil section [25].

(%) = 1/2pU%ao (6 (%) — ¢); @

Here, U and ¢ are the speed and inclination of the wind relative to
the airfoil in the plane of rotation, p is the density of air, 6 is the pitch
angle of the rotor blade element, c is the chord length of the rotor blade,
andy is the instantaneous rotor position. In addition, a, represents the
aerodynamic lift curve slope for the blade, Cr represents the thrust
coefficient and the coefficients 8, and §, represent the constant and
variable aerodynamic drag coefficients. As shown in (1), the pitch angle
of the rotor blade depends on the pilot inputs (and rotor position) and
the angle of attack (0-¢) of the rotor blade airfoils depends on both pilot
inputs and local wind conditions. Due to the high rotor speeds, ¢ has
small values (close to zero). As a result, the vertical thrust generated by
the airfoil section can be approximated to the generated lift-off force.

(@) = L(§)cos(¢) + d(@)sin(¢) ~ 1(P).

d@) = 1/20U% (8, + 8,C3).

(2



A. Kumar, P. Ben-Tzvi

2.1. Pilot inputs

The rotor hub of the helicopter controls the pitch angle of the rotor
blades by making use of a swash plate mechanism. The pilot's inputs for
the rotor hub are composed of three elements viz. Collective (6,), Roll
Cyclic (0.) and Pitch Cyclic (6;). The collective input results in an offset
in the rotor pitch angles and is responsible for the overall hovering
thrust generated by the helicopter. The cyclic input on the other hand
makes the rotor pitch change cyclically with the rotor position and
hence is responsible for thrust vectoring (tilting) and other desired
maneuvering. In simplified form, the rotor pitch angle can be re-
presented as follows in terms of collective and cyclic inputs and rotor
position:

() = 6y + 6. cos(¥p) + ;sin(y). 3

2.2. Aerodynamic loading and helicopter dynamics

To estimate the aerodynamic loading on the main rotor blades, it
can be assumed that the blades are composed of infinitesimally thin
airfoil sections of chord length ¢ and thickness dr, (Fig. 1B). Wind
vector experienced by any thin airfoil section depends on three para-
meters: rotor speed, fuselage rotation (rate), and local wind conditions
(comprising of both rotor induced wakes and external wind turbu-
lence). Because of near hover operation, the effect of relative wind due
to translational motion can be ignored. At any point in time, the relative
wind velocity vector experienced by a rotor blade due to its motion
alone can be expressed in terms of rotor speed and angular rates as
follows:

upn (1, ¥) = [— Qs BQcY — grey + prsyr. (O]

Here, upy, is the wind velocity vector relative to the helicopter blade
(airfoil) element at a radial distance of r, and angular location y in the
helicopter's frame of reference (while rotating at speed ) and {p, g, r}
constitute the three angular rates of the helicopter fuselage.
Additionally, the effect of yaw rate r is ignored here as r < < Q. By
subtracting (4) from external wind conditions, and pre-multiplying with
the rotation matrix corresponding to the rotor position, the net wind
experienced by the helicopter blade in element in the blade's frame of
reference can be written as follows:

Uy 0 Uy
Uz fon Vlin Uz Y 5)

Here u,,;, is the net wind velocity vector relative to the helicopter
blade (airfoil) element in the blade's frame of reference, Ry" is the ro-
tation matrix arising from rotor position y to convert wind estimates
relative to blade elements from rotor hub to blade's frame of reference.
The quantity [unuy,uZ]Twh in (5) represents the external wind vector
(spatially varying) in helicopter's frame of reference and v is helicopter
induced rotor inflow (in helicopter's frame of reference) which depends
on helicopter's mode of operation. For near hover conditions, the rotor
inflow can assumed to be uniform over the rotor disk area [25]. Since
the radial component of the wind does not contribute towards the
thrust generation, only the {u,,u,},;, components contributed towards
the blade aerodynamics. The aerodynamic loads generated by the rotor
blade depend on the wind's ‘angle of attack’ of the relative with respect
to the blade comprising of blade pitch angle 6, wind incidence angle ¢.
So, by substituting (5) in (1) and (2), the differential lift dI generated by
an element can be expressed as follows:

Uz

Uy
wp (b, P) = | Uy | =R
wb

¢ (n, ¥) = tan~ (uz/uy) ~ uz/u,

—_ 2 _ .

dl(n, ¥) = 1/2p(n,Q)%cag (6 — ¢)dny; {y, 1) = {”y/”z}wb
(6)

These aerodynamic loads, when integrated over the length of the
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rotor blades, result in a net force and moment on helicopter. The pro-
posed telemetry system focuses on the rotational effects of wind tur-
bulence on the helicopter and thus only the moments {L, M, N} acting
on the helicopter are studied. Rigid body equations of rotational motion
for a helicopter are given by the Newton-Euler equations shown below
™.

Ixxp = qr(I,Vy - zz) + (Lmr + Lg)
Lyq = rp(Iy — L) + (M + M) .

Lyt = pq(Ix — yy) + (=N + Nyy) (2]

Here, {I, L, I,;} are the three moments of inertia of the helicopter
respectively around X (right fin), Y (nose) and Z (up) axis. The sub-
scripts mr, tr and g in the moment terms represent ‘main rotor’, ‘tail
rotor’ and ‘gravity’, respectively. It is worth noting that the effect of the
non-diagonal component (predominately I.) of the inertia has been
neglected here as the values range from 7 to 30 times smaller than the
diagonal entries.

The differential lift generated by the pilot controlled rotor pitch and
wind flow pattern are the main and most prominent reason behind the
helicopter's rotational dynamics. The differential lift (6), when multi-
plied with the radial distance from the rotor, can be integrated over the
rotor length and position to obtain the net moment generated by one
rotor blade (T) and should be multiplied by the number of blades (N},)
to obtain net rotor moment. The Pitch and Roll moment [25] from the
main rotor can be obtained as follows.

2 27
Ly = Np/27 f T (Y)sinpdyp; My, = —N,/27 f T (¢)cos pdy;
=0 P=0

R
T@®) =1/2CipQ% [ n?(O@) — ¢, n))dn,

rp=0

(8

Here, the main rotor's yaw moment is ignored primarily because the
pitch and roll moments are the more critical quantities from a naval
safety perspective. In addition to this, the heading control system of the
RC helicopter compensates for any aerodynamic disturbances along
yaw axis through tail rotor. In the moment equations of the helicopter
(7, 8), other than the moments due to the gravity (L; and M,), all the
moments depend on pilot inputs and wind conditions. The orientation
of the helicopter along the pitch and roll axes create a ‘pendulum type’
restoring torque (9) which depends on the pitch and roll attitude angles
of the helicopter.

L, = —rmygsin(0); My = —rmyg sin(¢). 9

Here, r is the location of the center of mass with respect to the rotor
hub. Fig. 2 shows the general impact of aerodynamic thrust and attitude
on angular rates changes (moment) of the helicopter. In addition, g is
acceleration due to gravity and m, is the mass of the helicopter. The
angular accelerations (7) of the helicopter can be written in terms of
gravity and aerodynamic moments, which are non-linear functions of
previous angular rates, air conditions, pilot inputs and helicopter atti-
tude.

p[ :f(plqa 9i—1> t-15 Lg(e), Ly (P, W))

q[ = g(pz—l’ 9i—1> t-15 Mg(¢)’ Mmr(P, W)) (10)

Here, P and W correspond to the set of pilot servo actuator inputs
and wind model parameters, respectively. The nonlinear functions f, g
and the main rotor moment estimates, being too complicated to be
solved analytically, are determined experimentally using machine
learning algorithms. It is worth noting that the dynamics arising from
the rotor blade flapping have been ignored in this analysis. The rotor
blade flapping manifests itself as high-frequency fluctuations in the
helicopter's angular acceleration measurement. It may be removed by
applying a suitable low pass filter to the IMU reading. In addition, the
net aerodynamic load on the rotor blades is an arithmetic sum of the
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Fig. 2. Factors affecting helicopter dynamics (angular rates): (A),(B) Roll Dynamics, (C),(D) Pitch Dynamics.

components viz. pilot inputs and wind conditions. Since pilot inputs,
helicopter attitude, and previous angular rates can be measured and
their aerodynamic loads can be modeled, any deviation in the measured
angular acceleration from the estimated values is essentially the result
of wind disturbances and can be correlated to ship air wakes. Ship air
wake turbulence is the most predominant source of deviations.

3. Telemetry system hardware

The proposed telemetry system comprises of two independent in-
strumentation sub-systems called the rover module and the base
module. Fig. 3 shows the prototypes of both modules.

These modules communicate with each other via a 3.5 Mbps long-
range Wi-Fi network with an update rate of up to 150 Hz (~5 times the
rotor speed). The Wi-Fi router uses two types of antennas, one is an
omnidirectional short-range rod antenna and the other is a long-range
directional Yagi antenna. In tandem, both antennas provide a long-
range network coverage without any data loss. To estimate the ship air
wake patterns, an RC helicopter retrofitted with the rover module is
flown in the target area. The rover module then sends the helicopter's
dynamics data to the base module over the Wi-Fi network. A computer
connected to the base module records and processes the data then
displays appropriate results/flight parameters on the screen in the form
of graphs and trajectories. Both modules in the proposed wireless
telemetry system use aviation grade INS/IMU sensors to measure the
position and dynamics of the helicopter and the boat at a high rate (up
to 800 Hz).

RF Splitter

S PIRRTT

RTK

Battery

3.1. Rover module

The rover module is a battery powered instrumentation board that
reads data from a VN200 INS development board (under the green
interface board in Fig. 3A) and Piksi RTK, and sends the positioning
data via XBee Wi-Fi module. The central processing unit of the rover
module is an ARM Cortex M4 microcontroller that offers three UART
serial ports. Fig. 4A shows the electrical schematics of the rover
module. One serial port is being used to connect the RTK to the system,
while the second one is used to interface the Wi-Fi module. The third
serial port is left unused for future upgrades. The rover module acquires
helicopter flight parameters such as position, attitude, speed, angular
rates, and acceleration IMU packets with an update rate of 150 Hz from
the VN200 over SPI serial link.

The XBee modules with an omni-directional antenna had limited
transmission/reception capability in open areas, the telemetry and thus
required a custom RF communication system. Since the omnidirectional
rod antennas have a cylindrical radiation pattern, two perpendicular
2.4 GHz rod antennas are used on the rover module to achieve trans-
mission in all directions (Fig. 3A). To further improve the commu-
nication range and network reliability, a 2 W 2.4 GHz RF amplifier was
used with the XBee Wi-Fi transceivers.

3.2. Base module
The base module is an instrumentation board that receives pilot
inputs (from a radio controller) and data from the rover module. Fig. 3B

shows the assembly of the base module on a 3D printed mount, which

Charger Connector
Xbee WiFi

Fig. 3. Telemetry system hardware setup: (A) Rover module (Bottom view with cover removed); (B) Base module (Rearview without cover).
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Fig. 4. Electrical schematics of: (A) Rover module, and (B) Base module.

helps it fit rigidly on the ship during experiments. The core of this
module is a USB to a quad-UART hub that connects up to four serial
devices to a computer via USB port. An ARM Cortex M4 MCU board
reads five channels of PWM inputs from an RC receiver and sends the
pilot inputs to the PC via one of the serial ports on the hub.

Data from the rover module is received by the XBee Wi-Fi wirelessly
and directly sent to the PC via serial port. Similarly, INS data from the
VN200 sensor is sent to the PC via Serial port (S2). The fourth serial
port (S3) is used (via a 4 pin connector) to interface the Piksi RTK to the
system. The RTK system on the base module works in ‘base mode’ and
sends the RTK correction data to the RTK on the rover module through
a radio link. The baseline solution for the relative position is estimated
on the RTK in the rover module and sent to the base module over the
Wi-Fi link. Fig. 4B shows the electrical schematics of the ship base
module.

During measurement, the proposed telemetry system is mounted on
a T-REX 600E PRO RC helicopter and flown in the lee of the super-
structure of YP676 in a sweeping trajectory. The data is received on the
base computer connected to the base modules using a custom-made GUI
software in NI® LabVIEW™. The GUI allows the user to acquire and
record data in real-time without running into buffering issues due to its
highly optimized serial virtual COM port and carefully programmed
multi-threaded data handling capabilities. The GUI interfaces with the
COM ports emulated by the base module and LOSA tracker [26] (a
custom-made patent pending motion tracking device) to synchronize
the data according to the associated time-stamps and store the data in
text files for post processing. The relative position of the helicopter in
the boat's frame of reference is obtained from the position and heading
estimates from LOSA tracker/VN200 INS (on both modules).

4. System training

As shown in section II, the helicopter's moment measurements
(angular acceleration) can be split into three components viz. a gravity
component, the cross product of the inertia component, and the main
rotor component (comprising of effects of local wind conditions and
pilot inputs). Although the ship air wakes have both rotational and
translational impacts (in all three axes) on helicopters, pitch and roll
tilting are the most critical effects from a naval safety perspective. This
paper thus focuses on modeling the pitch and roll dynamics of the RC
helicopter to extract wind turbulence conditions. Data for training the
system to learn the helicopter's dynamics as a function of pilot inputs
and state variables was collected by flying the instrumented helicopter
in large indoor facilities. The helicopter was flown at an altitude of
more than two rotor diameters (~ 2.5 m, to eliminate any rotor-ground
effect) to perform a variety of high dynamics maneuvers and oscillatory
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tilting motion (at varying frequency) to create a versatile database of
pilot input combinations and corresponding angular acceleration
measurements.

4.1. Feed forward network

The proposed system uses a feedforward neural network to model
the dynamics of the helicopter in absence of external disturbance (ship
air wakes). Neural networks are interconnected directed graphs (Fig. 5)
comprising of cascaded MISO nodes known as neurons [27].

The proposed network used a ‘hyperbolic tangent’ sigmoid function
and a ‘purelin’ linear transfer function as objective functions for the
neurons in hidden layer and output layer respectively. As shown in
(10), the helicopter's angular acceleration measurements depend on
seven inputs viz. three channels of angular rate readings, tilting angle
(roll/pitch) and three swash plate pilot inputs. Thus, the input layer for
the network consisted of 7 neurons. In addition, two separate hidden-
layered feedforward networks were used for modeling the helicopter's
angular acceleration along pitch and roll axis, the output layer con-
sisted of a single neuron. For a network (Fig. 5) with {M, N} being the
number of neurons in the hidden layers, the total number of variables to
be optimized is (7 X M + M X N + N x 1) weights and (M + N + 1)
biases.

4.2. Particle swarm optimization

Backpropagation neural networks rely on gradient descent methods
for training, which can converge at local error minima in training
weight space. To overcome this limitation, the proposed system uses a
particle swarm optimization (PSO) [28,29] technique with 10-fold cross
validation for training the neural network. PSO is a non-gradient sto-
chastic sampling based optimization technique mimicking swarm in-
telligence of bird flocks with mathematical models.

Input Layer

Fig. 5. Proposed network topology.
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PSO is typically used for global optimization in multidimensional
search space where traditional neural networks are susceptible to
converging at local extrema. Each particle involved in PSO is defined by
a multidimensional vector in the search space with random initializa-
tion. In addition to this, all the particles retain a memory of their in-
dividual best performance and the global best performance (among all
particles) over that course of training. With each iteration, the particles
are evaluated according to their applications and the individual and
global best particles are updated. In a swarm with Xj and Xy being
individual particle's best performance and the global best particle re-
spectively, the particle velocities (V) and position (X) for any particle
are updated as follows:

Xy = Xno1 + WiV = mWyor + Cin(Xp — Xn-1) + G (Xgy — Xn-1).
an

Here, m (0.2) is the inertia coefficient, C;, C, (0.1, 0.2, respectively)
are exploitation coefficients and r;, r, are exploration coefficient
(random numbers generated between 0 and 1). This process continues
until the global best particle settles at the optimum position.

4.3. Training neural networks using PSO

The offline network training was done using custom-made MATLAB
scripts, which not only performed data preprocessing, but also emu-
lated neural network models by extracting weights and biases from
individual particles in the swarm. To train the neural networks using
PSO, a swarm of 5000 particles was randomly initialized, with the di-
mensionality of each particle decided by the topology of the network
under consideration. The networks were trained multiple times (with
different topology each time) with the number of neurons varied be-
tween 6 and 3 in both hidden layers. It was found that the networks
with hidden layer topologies of {5,2} and {4,3} for roll and pitch ac-
celeration prediction outperformed all other network topologies. All the
particles in the swarm were initialized using random weights/biases. To
keep the biases within the reach of the randomly assigned particles, the
input vectors to the network models were normalized to zero mean and
unit standard deviation. The global and individually best-performing
particles were updated on the basis root mean squared error on the
training data.

As mentioned before, 10-fold cross-validation was used for re-
trieving the optimum network during the training process. Ten percent
of the training data was used for cross-validation and the network was
said to be trained when the change in the prediction error was less than
(0.01 rad/s?) and the prediction error on the cross-validation data is
lesser than or equal to that of the training data. The network was
trained on 30,800 training samples (~30% data) and tested on separate
73,100 samples (~70% data). Fig. 6 shows the progression of the

0.6 T " - .
055 Training D.ata. ]
Ncn Cross Validation Data
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i
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training progress.

The mean absolute prediction error on the testing data set was
found to be 0.2868 rad/s? and 0.2441 rad/s? for the roll pitch accel-
eration prediction network respectively. Fig. 7 shows the angular ac-
celeration prediction error on a sample test fight for the both networks.
Fig. 7 also presents the prediction error distribution for the two net-
works in the form of histogram plots.

5. Indoor validation experiment

To test the capability of the telemetry system, the helicopter was
flown in a wind controlled indoor environment. To generate artificial
turbulent wind conditions, a setup of two 24-in diameter fans placed
opposite to each other was implemented (Fig. 8). The wind flow be-
tween the two fans was measured by using a three-axis Young™ Ul-
trasonic Anemometer (Model 81,000) [30] mounted on a pole with
adjustable height. The LOSA 3D motion tracking system [26] was used
to transfer the wind measurements from the sensor's frame of reference
to the global (wind source) frame of reference. The active marker for
the LOSA tracker was rigidly mounted on the anemometer and the
motion parameters like position, velocity, and attitude were measured
along with wind velocity in real-time. The attitude measurements were
used to rotate the measured wind vectors from the sensor's frame of
reference to the tracker's frame of reference. Furthermore, velocity
measurements from the tracker were subtracted from the wind mea-
surements to compensate for any motion in the anemometer readings.

To obtain the wind flow map, the anemometer was placed at dis-
crete locations on dense serpentine trajectories at different heights, and
the compensated wind velocities were recorded with 3D position vec-
tors in the global (fan) frame of reference. At each location, the wind
flow was recorded for at least 20 s at an update rate of 100 Hz. For each
location, both steady-state flow and turbulent component of the wind
flow were computed using this recorded data.

5.1. Wind map generation

As mentioned before, the helicopter dynamics are significantly af-
fected by the external wind flow pattern generated by the cruising
vessel. As it is not possible to measure wind velocity at every point in
space around the helicopter, the wind flow is approximated using a
parametrized model based on a finite number of measurements. As
shown in (12) the localized wind flow in the rotor hub's frame of re-
ference is assumed to be composed two components: steady-state (with
subscript L) and turbulent (with subscript T) and modelled as a Gaus-
sian process. The (mean) steady-state flow component, being pre-
dictable, is modeled using 12 parameters linear model whereas the
turbulent component, being stochastic in nature, has been modelled as
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S
©
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<
S
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Fig. 6. Mean absolute error versus iteration count for PSO-NN.
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Fig. 8. Indoor wind flow mapping experiment setup.

a random variable with Gaussian distribution:

Uy ay by c X dy Uy X ney
uy =1lay by ¢ | Y|+ |dy + WY =]nsp
Uz fon a; b, ¢, |L% d, uz §r L2 z

(12)

Here u,;, is the wind velocity vector at a position vector [x, y, 217
with respect to the rotor hub in helicopter's frame of reference and sy
and cy represent sine and cosines of the rotor position angle y respec-
tively. To obtain the steady-state wind flow, for each location of the
data recorded, a 12 parameter linear model (12) was fitted on the wind
measurements within a volume of 1.3m x 1.3m X 0.6 m (equivalent
to helicopter's size) using the least square method. In the model (12),
the vector [d,, d,, d,]" represents the mean steady-state flow vector in
the volume. The steady-state wind flow parameters were then inter-
polated to a 3D grid of 5 cm size using bilinear interpolation to generate
a 3D wind map for the experiment.

To assess the accuracy of the model (12) the interpolated steady-
state flow parameters were compared against the interpolated mea-
sured flow. Fig. 9A shows the spatial distribution of the error in mod-
eling the measured wind flow with respect to the measured flow. As
shown in the histogram (Fig. 9B) of the model deviations, represented
as a percentage of the wind flow of 7.24 m/s at the source (circulation
fans), most of the modeling error falls in 3-11% error bracket. High
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error zones are visible on the corner of the modeled volume is due to
the boundary effects of the interpolation process.

The turbulent component of the wind map was characterized by the
standard deviation of the wind measurements after removing the
steady-state component. The turbulence intensity was computed as the
norm of the standard deviations of the 3-axis wind velocity measure-
ments after subtracting the steady-state component (from the linear
model) within the sample volume of 1.3m X 1.3m X 0.6 m. Similar to
the steady-state flow, the turbulence map was generated by inter-
polating the turbulence intensity at a 3D grid of 5 cm.

Fig. 10 shows the final wind flow map generated by the experi-
mental fans setup (Fig. 8). Here, the arrow field represents 3D steady-
state wind flow field and the color represents the wind turbulence
content of the wind flow in the form of standard deviation of the local
wind speed. This turbulence data was used to map the helicopter's
moment residuals to wind conditions for the calibration of the proposed
system.

5.2. System calibration

To determine correlation between the helicopter's dynamics and
wind turbulence, another indoor experiment was performed where the
proposed system was flown in the region with the airflow modeled. As
described in the Egs. (8) and (10) local wind conditions directly affect
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Fig. 9. Validation of steady-state wind model: A) Spatial distribution of modeling error, B) Histogram distribution of model error as a percentage of input wind.

helicopter dynamics. Wind turbulence, which is stochastic in nature,
results in stochastic dynamics of the helicopter. Thus, similar to the
turbulence intensity, the effects of wind turbulence on the helicopter
are obtained from the standard deviation of the angular acceleration
residuals obtained from the trained PSO-NNs.

During the calibration experiment, the helicopter was gently man-
euvered between the two wind circulation fans as shown in Fig. 8. The
LOSA motion tracker [26] was retrofitted onto the helicopter's fuselage
for tracking the position and attitude of the helicopter. Since the same
tracker was used for the wind mapping experiment, the helicopter
motion and wind conditions were measured in the same frame of re-
ference and hence can be compared directly. The angular acceleration
estimates along the pitch and roll axes were converted from the heli-
copter's frame of reference to the tracker's (wind) frame of reference
using attitude estimates obtained from the tracker. Then, for all the
points on the helicopter trajectory, the norm of the local standard de-
viation of angular acceleration residuals (within a sample volume of
1.3m X 1.3m X 0.6 m) was computed. The local standard deviations

of angular acceleration residuals were then interpolated over the test
volume at a 3D grid of 5cm and compared to the turbulence map.
Fig. 11 shows the spatial distribution of the angular acceleration re-
sidual deviation (subfigure A) and wind turbulence (subfigure B), in the
form of 3D slice plots on planes X = 0m, Y = 2.8m and Z = 1.8 m.
For further analysis, the quantities from the two spatial distributions
(shown in Fig. 11), were plotted and compared with each other
(Fig. 12). Despite a high level of noise in the data, a positive correlation
is clearly visible in the two quantities. As shown in (8), the moment
exerted by the air wakes is proportional to the instantaneous wind
conditions (turbulence). Hence, after assuming a linear relationship, the
scaling factor coefficient between the angular acceleration residuals
and wind turbulence was estimated using linear curve fitting. Due to
the high levels of noise, RANSAC [31] optimization was used to fit a
linear relationship between the two quantities. Fig. 12 shows the
RANSAC inliers (in brown) and the linear fit line overlaid on the data
points. The linear scaling coefficient for the angular acceleration re-
siduals was obtained from the slope of the linear fit and was estimated
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Fig. 10. Indoor wind flow map: (A) 3D steady-state wind flow with turbulence map; (B) Sectional view of the 3D flow field at plane X = 0; (C) Zoomed-in flow field.
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Fig. 11. Helicopter response to wind turbulence, (A) Local (standard) deviation of the angular acceleration residuals; (B) Wind turbulence map.

to be 0.021 m-s/rad. The offset arising from the linear model for the
wind turbulence measurements is primarily result of sampling in a fi-
nite volume due to the sensing range limitation of the motion tracking
device. As this paper focuses on estimations of relative distribution of
the ship air wakes, the linear offset has been ignored while estimating
wind turbulence from angular acceleration residuals.

6. Outdoor system testing and comparison with CFD results

The air wake intensity derived from the dynamics of the helicopter
arising from interaction with air wakes is then plotted on a trajectory of
the helicopter relative to the ship. The YP676 is equipped with an an-
emometer array to help the craft master to maintain near-constant re-
lative wind conditions. Fig. 13 shows the telemetry system operating
over the flight deck of a modified YP676 craft.

To map the ship air wakes generated by YP676 naval training vessel,
an RC helicopter with the proposed instrumentation system was flown
in the lee of the vessel at near constant altitude during flight ops con-
ducted in the Chesapeake Bay. During experiments, the craft-master (of

1.6 T T T

the YP676) maintained a fixed relative wind speed of 6 knots (~3 m/s)
with the help of vertically mounted acoustic anemometer array in the
bow of the ship. The wind turbulence intensity was estimated from the
localized standard deviation angular rate residuals and plotted on the
trajectory of helicopter relative to the ship, then compared against CFD
results for qualitative comparison and analysis.

CFD simulations were performed at USNA's advanced computing
facility in Annapolis using Cobalt™ (a commercial parallel processing
CFD software) on an unstructured tetrahedral grid of nearly 20 million
tetrahedrons [3,16,17]. The USNA CFD simulation study used Mono-
tone Integrated Large Eddy Simulation (MILES), a laminar, time accu-
rate flow model, to simulate 30s of wind flow field generated by a
YP676 model against a head wind of 7 knots (3.6 m/s). In contrast to
the definition used by the authors for ship air wake, the USNA study
characterizes the ship air wakes as reduction in steady-state flow con-
tent computed as the norm of the time-averaged wind velocity vectors
in the simulated flow field. While defined differently, the USNA study
correlate well with the experimentation using the proposed system.
Assuming equidistribution of kinetic energy throughout the simulated
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Fig. 12. Calibration of angular acceleration residuals for estimation of wind turbulence.
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Fig. 13. Outdoor testing: (A) Telemetry system operating from YP676 flight deck (B) YP676 as seen from the RC helicopter.

volume, the regions with higher turbulence are expected to have rela-
tively lower values for the norm of mean flow velocity vectors. Simi-
larly, the regions with lower turbulence are expected to have higher
values for the norm of mean flow velocity vectors (closer to the input
head wind speed. For experimental data processing, the proposed
system treats the norm of the standard deviation of the wind velocity
vector (obtained from helicopter's angular acceleration residuals) as the
ship air wake (turbulence) intensity. Thus the two datasets can be
compared.

In Fig. 14A, simulated air wake pattern obtained in one of the
previous studies [3] has been presented, where the color represents the
turbulence intensity represented as of the norm of time averaged wind
velocity vectors. The red color represents pure steady-state flow
whereas blue color represents turbulent nature of the flow field.
Fig. 14B shows the experimentally ship air wake pattern on a helicopter
trajectory determined from the calibrated local standard deviation of
angular acceleration residuals.

Although, the output from the proposed system and the CFD study
represent different quantities, both physical quantities vary spatially
with the change in local wind turbulence in an inverse manner. Due to
the inaccessibility to the raw CFD data, the turbulence intensity com-
putations, as defined in the presented study, cannot be computed for
point-to-point comparison with the experimental data. However, a
qualitative comparison is still possible from the two distributions. For
qualitative analysis of the air wake patterns, the experimentally

Norm of Mean Velocity Vector (m/s)

obtained turbulence distribution was interpolated (using nearest
neighbor interpolation followed by low pass filtering) over the area
enclosed within the helicopter trajectory to generate a ship air wake
map. Fig. 15 shows a comparison between the ship air wake patterns
obtained from the CFD analysis and the proposed method.

Fig. 15A shows a cropped section simulated air wake pattern (pre-
sented in Fig. 14A) to compare against the experimentally obtained air
wake map (Fig. 15B). A high air wake zone is visible between 5m and
10 m in the aft of the test vessel. In addition, both maps show decay in
air wake intensity with distance from the flight deck of the vessel. As
described previously, contrasting definitions of wind turbulence in both
studies yield different metrics, displaying an inverse relationship, yet
with the same units of wind speed.

The experimentally obtained ship air wake map showed a good
spatial correlation with the results obtained using CFD analysis.
Fig. 15C shows a point-to-point comparison of the two air-wake maps
with linear lift (using least squares method) plotted in red. Both maps
show a negative correlation, as expected, (with Pearson correlation
coefficient of —0.6450) with the slope of linear fit being —0.9292. A
less than perfect correlation between the distributions in some regions,
especially in the farther regions from the vessel, can be attributed to the
fact that the helicopter spent little time there in the presented study.
Prolonged presence of the helicopter in a particular region would im-
prove the accuracy of the air wake estimates.
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Fig. 14. Ship air wake distribution: (A) CFD model simulation results with experimental trajectory overlaid; (B) Experimentally determined turbulence distribution.
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7. Conclusion and discussions

This paper proposed a new sensing platform capable of quantizing
and mapping wind turbulence patterns in large, open spaces where
conventional instrumentation cannot be used. Being air borne, the
proposed system not only increases the range of wind turbulence sen-
sing, but also gives an absolutely safe and low cost means to map ship
air wake patterns for naval vessels. The system was able to generate
turbulence patterns during both indoor and outdoor experiments with
good accuracy and correlation to CFD simulated turbulence patterns. By
enabling the measurement of ship air wake effects experienced by the
actual helicopters during ship board operations, the proposed system
offers a low cost platform for the testing of control strategies for au-
tonomous operations of helicopters in turbulent environments for both
military and civilian applications.

System limitations and future work: The system currently relies on the
rotational impact of wind turbulence on the helicopter to characterize
air wakes. By including the helicopter's linear drift in the system model,
the steady-state flow component of the wind pattern can also be esti-
mated using the proposed system. In addition, neural networks re-
present a black-box type modelling technique of a system that is sus-
ceptible to error if the input data differ too much from the training
dataset. An analytical dynamic modelling (of the helicopter) based
framework is under active development, which will use all measured
helicopter states (including linear motion) to provide a better char-
acterization of the ship air wakes.
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