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Abstract: This paper presents a dynam ic model of a rotating beam with a tip m ass undergoing large  
angle, high speed m aneuvering. This type of model m ay also be us eful in m odeling, analysis and 
development of various inertial sensors and trans ducers with sim ilar operating principles. W ith the  
consideration of the sec ond-order term  of the coupling defor mation field, the complete first-order 
approximated model (CFOAM) of a flexible sp acecraft system is developed by using assum ed mode 
method (AMM) and L agrangian principle. A first- order approximated model (FOAM) is obtained by 
neglecting the high order term s of the generalized coordinates in  CFOAM. A lower order simplified  
first-order approxim ated m odel (SFOAM) is deri ved by deleting the term s relate d to the axial 
deformation. Numerical simulations and theoretical analysis show that: (i) the second-order term has a 
significant effect on the dynam ic characteristics of the system and th e dynamic stiffening is accounted 
for, while the traditional linear approximated model (TLAM) presents invalid simulation results; (ii) the 
end mass has a ‘stiffening’ effect on the flexible system in FOAM, but a ‘softening’ effect in TLAM; and 
(iii) the SF OAM describes the dynam ic behavior well and can be used for controller design.   
Copyright © 2009 IFSA. 
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1. Introduction 
 
Rotating flexible beams are used to model light robot arms, elastic linkages, helicopter rotors, satellite 
solar arrays, and like systems. Modeling and control of systems involving interconnected rigid structures 
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and flexible appendages is a difficu lt task to ac complish, as most of  these system s generally involve 
complex dynam ics characterized by  nonlinearities and strong coupling between flexible and rigid 
modes. Moreover, m odern engineering technology is  leading to ever more dem anding performance 
criteria, such as high rotational speeds and large angular maneuvering, increasing precision and pointing 
accuracy. These criteria have posed serious diffi culties for all cu rrently advocated control d esign 
methodologies. Proper dynam ic modeling of the system  is a foundation for furt her research, such as  
analysis of the dynamic characteristics and various controller designs. 
 
The hybrid coordinate approach is currently the m ost widely used m ethod, which describes the  
deformation field of flexible a nd rigid bodies separately. Mechani cal systems undergoing high–speed 
rotation can produce dynam ic stiffening [1, 2] due to the coupling be tween rigid motion and elastic 
deflection, and hence tradition al dynamic analysis t echniques are hard ly applicable. The deformation 
field, commonly used in structural dynamics, is adopted in order to calculate the kinematics of flexible 
structures in the system. Therefore, modal characteri stic changes due to high ro tational speeds are not 
included in the traditional dynamic model [3]. 
 
In most cases, problems arise not because of a lack of available analytical/numerical design procedures, 
but because of our failure to recognize and appreciate the mechanism of dynamic stiffening. Unlike the 
research reported in [4,5], where the attempt was to “capture” the dynamic stiffening terms, Hong et al 
[6-8]  studied the mechanism of dynamic stiffening, and concluded that the coupling deformation field 
can explain this phenom enon. Res earches [7–10] indi cated that the coupling term  not included in 
traditional linear def ormation f ield c an have sig nificant ef fect on the dy namic character istics of  the 
multibody system  when it undergoes large rigid–body m otion. The work done by Yang et al [7] 
investigated a hub–beam  system by using finite elem ent method, and pointed ou t that the traditional 
hybrid coordinate approach m ay lead to erroneous re sults in som e high–speed system s. In Re f. [9], 
Kane’s methods and the assum ed mode m ethod (AMM) were em ployed to investigate rigid-flexible 
dynamics of a spacecraft with solar panels. In this  paper, we develo ped the co mplete first–order  
approximated model (CFOAM) of a hub–beam system  by using the AMM and La grangian principle. 
The corresponding dynamic model of the tip mass is developed in a consistent manner. 
 
This paper is organized as follows. Section 2 desc ribes the f lexible hub–beam system and defines the  
various symbols used. In section 3, the dynamic equations of the flexible system are developed, such as 
CFOAM, FOAM and SFOAM. In section 4, numerical simulations and comparisons with the traditional 
linear approximated model (TLAM) are pres ented to demonstrate the validity of the developed model  
(CFOAM). Furtherm ore, the effect of the tip mass on the dynam ic characteristics of the hub–bea m 
system is also discussed in the section. The paper concludes with a discussion provided in section 5. 
 
 
2. System Description 
 
The system  shown in Fig. 1 consists of a cant ilever beam  B built into a rigid body H. The  
coordinates XY and xy in the figure are defined as the in ertial fram e and the reference fram e, 
respectively. puv is denoted as th e flexible deformation vector at point P  with respect to th e xy  frame, 
and Ar

v  is the radius vector of point A  on the hub. θ  is considered as rigi d body coordinate. After  
deformation, point 0P  moves to point P . 
 
The beam is characterized by a natural length L , material properties E , ρ , and cross-sectional properties 
A , I , defined as follows. E  and ρ  are the modulus of elasticity, and the mass per unit volume of the  
beam, respectively. The area of the cross section is denoted byA , and the beam area moment of inertia is 
denoted by I .  
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Fig. 1. Beam attached to a moving rigid hub. 
 
 
3. Equations of Motion 
 
As shown in Fig. 1, the position vector from O  to P  in the XY  frame can be expressed as: 
 
 0p A pr r r u= + +v v v v , (1)
 
where Ar OA=

uuuvv , 00r AP=
uuuvv , and 0pu P P=

uuuvv . The coordinates of Ar
v  and 0r

v  in the OXY  frame are represented by 

Ar  and 0r , respectively. 
 
As shown in Fig. 2, the coordinate of the deformation vector puv  can be represented as: 
 
 1 2( ) ( )T T

p cu v w w w= = +u , (2)
 
where u and v  are the deform ation quantities of the point 0P  in the x and y directions in xy  frame, 
respectively; 1w  represents the pure axial deform ation, and 2w  represents the transverse d eformation 
along the y–axis. cw  is the deformation associated with the foreshortening quantity due to 2w , and is 
represented as [7, 8]: 
 
 2

2
0

1 d
2

x

c
w

w x
x

∂⎛ ⎞= − ⎜ ⎟∂⎝ ⎠∫  (3)

 
The coordinate of prv in equation (1) may be written in the XY  frame as 
 
 0 0( )p A p A pr= + + = +eQ Q( + )r r r u r u , (4)
 
where 0 ( 0)Tx=r , ( )T

p u v=u , (1 0)T=e , and (cos sin )T
A Ar θ θ=r . As shown in Fig. 2, the variable x  is 

the coordinate of point 0P  in the xy  frame, and the parameter Q  is the rotational transformation matrix 
given by: 
 
 cos sin

sin cos
θ θ
θ θ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Q , (5)

 
where θ  is the angular displacement of the hub. 
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Fig. 2. Description of the beam deformation. 
 
 
The first-order derivative of Pr  may be expressed as 
 
 0P A p pr θ= +e && &r r u uQ ( + ) + QI  (6)
 
where 
 
 1

2

0 1
,

1 0
c

p

w w
w

=
−− ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

I
& &

&
&

u . (7)

 
From Eq. (6), we can derive 
 
 ( ){ } ( ) ( ) ( ){ }2 22 2 2

1 2 1 2 1 2 12T
P P A c c A c cr w w x w w w w r w w x w w w vθ θ= + + + + + + + + + + + − +& && & & & & & & &r r  (8)

 
The kinetic energy of the hub–beam system is written as 
 
 2

0

1 1 1
2 2 2

L T T
h b t h P P m mT T T T J dxθ= + + = + +∫& & & & &tr r m r r , (9)

 
where hT  , bT  and tT   are the kinetic energy of the hub, beam  and tip m ass, respectively. hJ  is the 
rotational inertia of the hub. tm  is the weight of the tip mass, mr  is the coordinate of the position vector 
from O  to the tip mass. 
 
By using Euler–Bernoulli theory, the potential energy is given by 
 
 22 2

1 2
20 0

1 1
2 2

L Lw w
U EA dx EI dx

x x
⎛ ⎞∂ ∂⎛ ⎞= + ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫  (10)

 
where E  is Young’s modulus, A  is the cross–sectional area and I  is the area moment of inertia. The 
AMM is used to discretize the elastic beam, then the deformations u  and v  can be represented as:  
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2

1 1
, , ,

n n

i i i i
i i

u x t x t v x t x t
= =

= =∑ ∑q qf f , (11)
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P

v 
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where ( ) ( )1
i xf  and ( ) ( )2

i xf  are the adm issible functions, ( ) ( )1
i tq  and ( ) ( )2

i tq  are the mode generalized 
coordinates, and n  refers to the num ber of included modes. In subsequent derivations, ( )1 xf , ( )2 xf , 

( )1 tq  and ( )2 tq  are adopted to represent the vectors of ( ) ( )1
i xf , ( ) ( )2

i xf , ( ) ( )1
i tq and ( ) ( )2

i tq  respectively. 
From Eq. (11), Eq. (8) can be rewritten as 
 
 ( ) ( ) ( ){ ( )

( ){ } ( )

222
1 1 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2

2
o 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 2 2

12
4

2 2

T T T T T T T T
p p A A A

T T T T T T T T T T T T T

r x r x r x

r x

θ

θ

⎫= + + + − + + + − + ⎬
⎭

+ + + − + + + − +

&& &

& & & & & & & & & & & &

r r S S S

S S S

f f f f f f

f f f f f f f f f f f

q q q q q q q q q q q q

q q q q q q q q q q q q q q q q q
, (12)

 

where 2
1 1 2 2

Tθ& q q Sqf , 2 2 2 22 Tθ& &q Sq qf , 1 1 2 22 T T T& &q q qf S , ( )2
2 2
T &q Sq  and ( )22

2 2
1
4

Tθ& q Sq  are high order terms related to 

the generalized coordinates. 
 
 
3.1. Equations of Motion at the Element Level 
 
To derive the equations of m otion in a m ore co mpact form, the follo wing elem ent coefficie nts and 
matrices are introduced: 
 ( )2

0

L

b AJ A r x dxρ= +∫  (13)
 
 ( ) ( )1 1

1 0

T
L x x

EA dx
x x

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫K

f f  (14)

 
 ( ) ( )2 2

2 2
2 2 20

T
L x x

EI dx
x x

⎛ ⎞∂ ∂
= ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
∫K

f f  (15)

 
 

0
, 1, 2

L T
iA dx iρ= =∫i iM f f  (16)

 
 ( )

0
1,2

L

i A iA r x dx iρ= + =∫V f  (17)
 
 ( ) ( )

0

L

AA r x x dxρ= +∫D S  (18)
 
 

1 20

L TA dxρ= ∫R f f , (19)
 
where bJ  is the rotational inertia of the beam about the hub center, matrices 1

n nR ×∈K  and 2
n nR ×∈K  are 

the conv entional s tiffness m atrices, n nR ×∈iM , 1, 2i =  are g eneralized elastic m ass m atrices, m atrix D  
results from the second orde r term of the coupling defo rmation field (3 ), matrix R  results f rom the 
gyroscopic effects, and ( )xS results from cw  and is represented as: 
 
 

( ) ( ) ( )2 2

0
d

T
x

x
ξ ξ

ξ
ξ ξ

∂ ∂
=

∂ ∂∫S
f f  (20)

 
It is im portant to note th at matrix D  is non-negative definite because ( )xS  is a non-negative definite 
matrix. 
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Using AMM with n  assumed modes, Eqs. (9) and (10) can be rewritten as: 
 
 ( )

( ){ ( ) }

2
1 1 1 1 1 2 2 2 2 2 2 2 1 2 2 1 1 1 1

2 22 2
2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 2 20

1 1 1 1 1 1
2 2 2 2 2 2

1 1 2 2
2 4

T T T T T T T
h b

LT T T T T T

T J J

A dx1

θ θ

ρ θ θ θ

⎛ ⎞= + + + + − + + − +⎜ ⎟
⎝ ⎠

+ + − + + −∫

& & & & & & &

& & && & & & & &S S S S Sf f f

V q q M q q M q q Dq V q q R q q R q q M q

q M q q q q q q q q q q q q q q
 (21)

 
 

1 1 1 2 2 2
1 1
2 2

T TU = +q K q q K q  (22)

 
The governing equations of motion can now be obtained through the application of the Lagrangian 
principle 
 
 

1,2, , 1d T T U i n
dt
⎛ ⎞∂ ∂ ∂

− + = = +⎜ ⎟∂ ∂ ∂⎝ ⎠
L

& i
i i i

Q
h h h

, (23)

 
where iη  are the system generalized coordinates, and iQ  the non-conservative generalized forces due to 
environmental effects and actuators.  
 
By substituting Eqs. (21) and (22) into Eq.(23), the equations of motion of the flexible system at the 
element level in compact form can be written as: 
 
 

1 2

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2 2

1 11

2 22

0 0
2 0 0

0 0

q q

q q q q q q q q

q q q q q q q q

M Qθθ θ θ θ

θ

θ

θ θ τθ
θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&&&

& &&&

&&&

M M

M M G q K q Qq
q qqM M G K Q

0 0 0 0
0 0 0 0

00 0 0

, (24)

  
where 1Rθθ ∈M  is the rotary inertia of the system, 

1 1

n n
q q R ×∈M  and 

2 2

n n
q q R ×∈M  are the beam generalized 

elastic m ass m atrices, 
1

1 n
q Rθ

×∈M , 
2

1 n
q Rθ

×∈M , 
1

1n
q Rθ

×∈M  and 
2

1n
q Rθ

×∈M represent the non linear in ertia 
coupling between the motion of the refere nce fram e and the elastic deform ations, 

1 1

n n
q q R ×∈K  and 

2 2

n n
q q R ×∈K  are generalized elastic stiffness matrices that are shown to be affected by both the motion of 

the reference frame and the elas tic defor mations, Qθ  represents inertia forces, and τ is the rota tional 
external torque. The parameters in Eq. (24) are given as follows: 
 
 1 1 1 2 2 2 11 1 2 22T T T

h bM J J Mθθ θθ= + + + + − + ∆q M q q M q V q q D q  (25)
 
 

1 1 2
T

q qθ θ= = −M M R q  (26)
 
 

2 2 212 1
T T T

q q qθ θ θ= = + + ∆M M V q R M  (27)
 
 

2 2 212 1
T T T

q q qθ θ θ= = + + ∆M M V q R M  (28)
 
 

1 2 2 1

T
q q q q= − = −G G R  (29)

 
 

1 1

2
1 1q q θ= − &K K M  (30)

 
 

2 2

2 2
2 2q q θ θ= − +& &K K M D  (31)
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 ( )1 1 1 2 2 2 1 1 2 22 T T T
θ θθ ⎡ ⎤= − + + − + ∆⎣ ⎦

& & & & &q M q q M q V q q D qQ Q  (32)
 
 

1 1

2
1
T

q qθ= + ∆&Q V Q  (33)
 
 

2 2q q= ∆Q Q , (34)
 
where 
 
 ( )2

2 2 1 1 2 20

1 2
2

L T TM A dxθθ ρ ⎧ ⎫∆ = −⎨ ⎬
⎩ ⎭∫ q Sq q q qf S  (35)

 
 

2 2 2 20
4

L

q A dxθ ρ∆ = ∫M q Sqf  (36)
 
 ( )( ){ }1 1 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 20

2 2
L T T T T T T TA dxθ ρ θ θ θ∆ = − + − + + +∫ & & & && & & & && & &qf f f f fq q Sq q Sq q Sq q q Sq Sq q q Sq q q Sq qQ  (37)

 
 { }1

2
1 2 2 1 2 2 1 2 20

2 2
L T T T T T T
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A

dx

1 1

1

ρ θ θ θ θ

θ θ

∆ = − − + +
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∫ & & & && & && & & & & & &

& &&& & & & & & &

qQ + + S

+ S S +

f f f f f f

f f

q Sq q Sq q Sq q Sq q Sq Sq q Sq q q

q q q q Sq Sq q Sq q Sq Sq q Sq q Sq Sq
 (39)

 
Equations (35)-(39) are derived from the high order terms in Eq. (12).  
 
In Eq. (24), the nonlinear coupling between the rigid–body motion and th e elastic deformations can be 
easily seen. The underlined terms in Eqs. (25), (31) and (32) result from the coupling deformation field. 
The newly established Eqs. (24)-(34) are called the complete first-order approximate model(CFOAM), 
while the CFOAM without Eqs.(35)-(39) are called the first-order approxim ate model (FOAM). The 
FOAM wit hout the un derlined term s are called trad itional lin ear ap proximate model (TLAM). A 
simplified first-order approximate model (SFOAM) of the hub-beam system can be derived from FOAM 
by deleting the elements related to Qθ , 1q and 1&q :  
 
 

2

2 22 2 2 22

0q

q qq q q

Mθθ θ

θ

θ τθ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

M
K qM M q

0
0 0

, (40)

 
where Mθθ ,

2qθM ,
2q θM ,

2 2q qM  and 
2 2q qK  can also be obtained by deleting the elements related to 1q  and 1&q  

in (25), (27), (28), (31) and(32). It is noted that SFOAM can be used for controller design. 
 
 
3.2. Tip Mass Dynamics  
 
The tip mass, as shown in Fig. 1, is located at a distance l  along the undeformed beam from point A. It is 
considered to have a mass tm . The position vector of the tip mass with respect to the inertial frame XY can 
be represented as 
 
 ( )m A t t= + +Qr r r u , (41)
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where ( 0)T
t l=r  is the position v ector of  the  tip m ass in the ref erence f rame xy  in the undeform ed 

configuration, and tu  is the elastic displacement vector of the point on the beam to which the tip mass is 
attached. 
 
The contribution of the tip mass to FOAM of the multibody system can also be included by applying the 
Lagrangian principle. The equations can be represented by the following matrix form: 
 
 

1 2

1 1 1 1 2 1 1 1

2 2 2 2 1 2 2

1 11

2 22

0 0
2

l l l
q q

l
q q q q q q q q

q q q q q q q

QM
θθθ θ θ

θ

θ

θ θθ
θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&&&

& &&&

&&&

l

l l l l

l l l l

M M

M M G q K q Qq
q qqM M G K

0 0 0 0
0 0 0 0 0

0 0 0 0 0 0

, (42)

 
where the coefficients and matrices are shown in the appendix. 
 
 
3.3. Equations of Motion of the Whole System 
 
The FOAM  of the whole system  can be obtained fr om Eqs. (24) and (42) directly by adding the 
corresponding entries of the generalized m atrices. Two different m odels are developed in order to 
examine the effect of the second order term. The established equations with and without the underlined 
terms are called FOAM and TLAM, respectively. 
 
 
4. Simulations and Results 
 
The physical param eters of the flexible hub-beam  syste m are shown in Table 1. The payload is  
represented by a point mass tm  at the free end of the beam. The number of included modes n  is 5. 
 
 

Table 1. Physical parameters. 
 

Property Symbol Value 
Beam length L  8m 
Mass per unit volume ρ  2.7667×103 kg/m3 
Cross-Section A  7.2968×10-5 m2 
Young’s modulus E  6.8952×1010 N/m2 
Beam area moment of inertia I  8.2189×10-9m4 
Hub moment of inertia hJ  200 kgm2 
Hub radius r  0.5 m 
Tip mass tm  0.1 kg 

 
 
The response of the flexible m otion is sim ulated by assum ing that the slewing motion follows a 
prescribed trajectory, and the maneuver profile [2] is given by 
 
 2sin , 0

2

,

f f
f

f f

f f

w w
t t t

t t

w t t

π
πθ

⎧ ⎛ ⎞
− ≤ ≤⎪ ⎜ ⎟⎪ ⎜ ⎟= ⎨ ⎝ ⎠

⎪ >⎪⎩

&  (43)

 
where fw  and ft  represent the velocity of the hub at the end of the maneuver, and the time to reach the 
maximum velocity, respectively. 



Sensors & Transducers Journal, Vol. 5, Special Issue, March 2009, pp. 53-68 

 61

4.1. Vibration Response of CFOAM and FOAM  
 
Let us consider first CFOAM and FOAM of the hub–beam system without a tip mass. 
 
The terms (35)-(39) in CFOAM are the integrations of the generalized coordinates. Thus, CFOAM is not 
only complicated in presentation, but also difficult in symbolic computation and numerical simulation. 
Fig. 3 shows the simulation results with the neglected terms when fw  is 3 rad/s. For simplicity, the first 
mode is taken into account. In fact, it dominates the transverse response of the beam (see Fig. 6). We can 
see from Fig. 3 that these terms have small amplitude and tend to reach zero after 30 s. 
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Fig. 3. Response with the neglected terms when fw =3 rad/s. 
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Fig. 4 shows that the displacement of CFOAM and FOAM  is exactly the same. This confirms that the 
simplification is valid and FOAM can be used to investigate the dynamic characteristics of the flexible 
multibody system. 
 
 

0 5 10 15 20 25 30 35 40 45 50

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05

   time (s)

   
tr

an
sv

er
se

 d
is

pl
ac

em
en

t u
t (m

)

CFOAM
FOAM

 
 

Fig. 4. Tip displacement of CFOAM and FOAM when fw =3 rad/s. 
 

 
4.2. Vibration Response of FOAM and TLAM 
 
Fig. 5 shows the sim ulation result s of TLAM and FOAM  for com parison. It can be seen that the 
vibration response of the flexible beam  diverges when  the angular velocity is greater than 3rad/s. It 
should be noted that the resulting tip displacem ent of TLAM has exceeded the assum ption of sm all 
deformations. W hen the angular velocity is sm aller th an 3rad/s but close to th e critical value, e.g., 
2.8rad/s, the m aximum tip deflection of TLAM is much larger than that of FOAM, whic h are 
approximately 0.49m and 0.22m, respectively. Moreover, the residual vibration amplitude of TLAM is 
approximately 100 times larger than that of FOAM. It can be concluded therefore that TLAM is invalid 
for describing the deformation of multibody systems in high–speed cases. 
 
Because the second order term in the deformation is not included, the generalized elastic stiffness matrix 
in the TLAM is expressed as

2 2

2
2 2q q θ= − &K K M . From this expression, it is s een that the stiffness matrix 

may be negative definite when the angular velocity surpasses a critical value. In fact, it can be calculated 
from Eq. (31) that the critical angular velocity is 2.91rad/s. This is the first order natural circle frequency 
of the beam according to Table 2. The frequencies evaluated with TLAM are ‘softening’ compared to the 
natural frequencies. On the other hand, the generalized elastic stiffne ss matrix in FOAM is expressed 
as

2 2

2 2
2 2q q θ θ= − +& &K K M D , in which the underlined term  2θ& D  is non–negative definite, and can m ake 

2 2q qK  definite positive. 
 
As shown in Table 2, the natural vibration frequency is larger than that evaluated with TLAM, but less 
than that evaluated with FOAM, i.e. the second order term  in coupling deform ation field has a  
‘stiffening’ effect on the frequencies of the multibody system in high-speed case. The difference values 
become larger when the speed increases. 
 
 

Table 2. The inertia force under different torques. 
 

Mode order 1 2 3 4 5 
Natural frequency 0.4635 2.9047 8.1332 15.9377 26.3462 
TLAM (1 rad/s) 0.4353 2.9003 8.1316 15.9369 26.3457 
FOAM (1 rad/s) 0.4714 2.9308 8.1618 15.9682 26.3776 
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(a) Transverse response of the tip of the beam. 
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(b) Axial response of the tip of the beam. 
 

Fig. 5. Beam vibration response with respect to different angular velocities. 
 
 

 
4.3. Vibration Response of FOAM and SFOAM 
 
Consider first FOAM of the hub–beam  system without tip m ass. For 5 /fw rad s= , and 30ft s= , the  
resulting response of the first five modes of the flexible hub–beam system is shown in Fig. 6.  
 
It can be seen that the peak response of the transverse displacement is approximately 1500 times larger 
than that of the axial displacement. As shown in Fig. 6a, the response of the first two modes dominates 
over the response of the higher m odes. Thus the elements related to 1q  and 1&q  in (25) can be neglected 
for simplification. Fig. 6b clearly shows that the simulation results for the different number of modes are 
exactly the same. 
 
Next, we assume that the torque acting on the rigid hub has the following profile: 
 
 

( )
2sin , 0

0,

m f

f

t t t
Tt

t t

πτ
τ

⎧ ⎛ ⎞ ≤ ≤⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ >⎩

, (44)

 
where 10ft s=  is the maneuver time, and mτ  is the maximum torque. 
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(a) Response of the transverse displacement. 
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(b) Response of the axial displacement. 
 

Fig. 6. Beam vibration response to prescribed slew maneuver. 
 
 

As shown in Fig. 7, the m aximum amplitude of Qθ  is 2.62 N m, which is about 6.5 % of mτ . Table 3 
outlines the maximum amplitudes of the generated Qθ  with different ( )tτ  acting on the hub. It is clear 
that Qθ  is small and hence can be treated as a small disturbance of ( )tτ . Therefore, for simplification, it is 
not included in SFOAM. 
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Fig. 7. Response of Qθ  when mτ  is 400Nm. 
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Table 3. The first five vibration frequencies (Hz). 
 

Torque Value (Nm) 
mτ  50.0 100 200 400 

Qθ  6.24×10-3 4.61×10-2 3.72×10-2 2.62
 
 
Fig. 8 shows the simulation results of FADM and SFOAM. When the torque is small (50 Nm), as shown 
in Fig. 8 a, the simulation curves of SFADM almost coincided with that of FOAM.  But the d ifference 
appears when mτ  is 200 Nm. Fig. 8 b shows that the phase of the residual vibration of SFOAM is leading 
that of FOAM by 0.45 rad, but the amplitude is 24% smaller than that of the latter.  We can also see that 
the displacement of SFOAM is exa ctly the sam e (see Fig. 8 b). That is, SFOAM  with th e first mode 
reflects the dynamic characteristic of the hub-beam system well, and can be used for controller design. 
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(a) mτ  is 50Nm. 
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(b) mτ  is 200Nm. 
 

Fig. 8. Tip displacement of the beam when mτ  are 50Nm and 200Nm. 
 
 

4.4. Vibration Response of Hub-beam System with Tip Mass 
 
The genera l elas tic s tiffness m atrix of  the whole system  in TLAM is 2 2

22 2 2 2 2( ) ( )T
tm l lθ θ= − −& &K K M f f , 

which shows that the po sitive definite property o f the stiffness matrix in TLAM is determ ined by the 
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position tr , the angular velocity θ& and the mass tm . It is known that the positive definite property of 22K  
is determined by the sign of its eigenvalues. Fig. 9 shows this relationship. 
 
As shown in the figure, the criti cal velocity is 2.91 rad/s when mt is located on the hub ( 0l = ). If th e 
angular velocity exceeds the critical value, the dominant eigenvalues of 22K  will be negative , which can 
explain the simulation results shown in Fig. 4 (with 3 rad/s). When the tip mass is located at the tip of the 
beam, the critical velocities are 2.60 rad/s and 1.91 rad/s for mt=0.1 kg and mt=0.5 kg, respectively. Fig. 
10 shows the transverse displacement of TLAM for the above two cases. For mt=0.5 kg, TLAM fails to 
describe the deformation of the flexible beam  when the angular velocity is 2.0 rad/s. However, for the 
same angular velocity, the simulation result of TLAM is almost the same as for FOAM when mt=0. It is 
seen that the tip mass decreases the critical angular velocity. Moreover, it can be  concluded that as the  
weight increases, the critical value decreases. 
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Fig. 9. The dominant eigenvalues of 22K . 
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Fig. 10. Response of TLAM system with tip mass. 
 
 

The generalized elastic stiffness matrix of the tip mass is expressed as
2 2

2
2 2( ) ( )l T

q q tm l l θ= − &K f f , which has a 
‘softening’ effect on the flexible hub–beam  syst em. Beca use the second order term  in coupling 
deformation is included,  the gen eralized elastic stiffness matrix in FOAM has the term ( ) 2

t Am r L θ+ & S , 
which acts as a ‘stiffening’ effect. 
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5. Conclusions 
 
In this paper, the CFOAM, FOAM and SFOAM of a flexible hub–beam system with a tip m ass have 
been presented by using AMM and Lagrangian princi ple. It is shown that  the traditional hybrid 
co-ordinate approach cannot account for dynamic stiffening and may lead to erroneous results in some 
high-speed systems. In contrast, the models we developed in this paper can predict valid results. It was 
also shown that SFOAM model can be used for controller design. The tip mass has a ‘softening’ effect 
on the hub-beam  system in TLAM, but has a ‘stiffeni ng’ effect in F OAM. Theoretical analysis and 
simulation results show that FOAM has better a daptability than TLAM, especially in cases with  high 
rotational speeds. As a future research, experimental investigations on such a system are needed. 
 
 
Appendix 
 
The coefficients and matrices in the equation of motion of the tip mass are given as follows: 
 
 ( ) ( ) ( )2

1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) 2 ( )l T T T T T
t A t t t A t AM m r l m l l m l l m r L l m r Lθθ = + + + + + − +f f f f fq q q q q q Sq  (A1)

 
 ( )1 1 1 2 2( ) ( )

Tl l T
q q tm l lθ θ= = −M M qf f  (A2)

 
 ( ) ( )

2 2 2 1 1 2( ) ( ) ( )
Tl l T T

q q t A tm r L l m l lθ θ= = + +M M qf f f  (A3)
 
 

1 1 1 1( ) ( )l T
q q tm l l=M f f  (A4)

 
 

2 2 2 2( ) ( )l T
q q tm l l=M f f  (A5)

 
 ( )1 2 2 1 1 2( ) ( )

Tl l T
q q q q tm l l= − = −G G f f  (A6)

 
 

1 1

2
1 1( ) ( )l T

q q tm l l θ= − &K f f  (A7)
 
 ( )

2 2

2 2
2 2( ) ( )l T

q q t t Am l l m r Lθ θ= − + +& &K Sf f  (A8)
 
 ( ) ( )1 1 1 1 2 2 2 2 1 1 2 2( ) ( ) ( ) ( ) ( )l T T T T T

t t t A t Am l l m l l m r L l m r Lθ θ ⎡ ⎤= − + + + − +⎣ ⎦
& & & & &f f f f fQ q q q q q q Sq  (A9)

 
 ( )

1

2
1 ( )T

q t Am r L lθ= + &lQ f  (A10)
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