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Controller Design, Analysis, and
Experimental Validation of a
Robotic Serpentine Tail to
Maneuver and Stabilize a
Quadrupedal Robot
This paper analyzes how a multisegment, articulated serpentine tail can enhance the
maneuvering and stability of a quadrupedal robot. A persistent challenge in legged
robots is the need to account for propulsion, maneuvering, and stabilization considera-
tions when generating control inputs for multidegree-of-freedom spatial legs. Looking to
nature, many animals offset some of this required functionality to their tails to reduce the
required action by their legs. By including a robotic tail on-board a legged robot, the
gravitational and inertial loading of the tail can be utilized to provide for the robot’s
maneuverability and stability, while the legs primarily provide the robot’s propulsion.
System designs for the articulated serpentine tail and quadrupedal platform are pre-
sented, along with the dynamic models used to represent these systems. Outer-loop con-
trollers that implement the desired maneuvering and stabilizing behaviors are discussed,
along with an inner-loop controller that maps the desired tail trajectory into motor tor-
que commands for the tail. Case studies showing the tail’s ability to modify yaw-angle
heading during locomotion (maneuvering) and to reject a destabilizing external disturb-
ance in the roll direction (stabilization) are considered. Simulation results utilizing the
tail’s dynamic model and experimental results utilizing the tail prototype, in conjunction
with the simulated quadrupedal platform, are generated. Successful maneuvering
and stabilization are demonstrated by the simulated results and validated through
experimentation. [DOI: 10.1115/1.4042948]

1 Introduction

In nature, animals rely on their tails to aid a variety of locomo-
tive functions. Quadrupedal animals in particular utilize their tail
for enhanced maneuvering and stabilization. For maneuvering,
cheetahs use their tails to assist in turning [1] and geckos use their
tails to re-orient in midair [2]. For stabilization, cats use their tail
as an active counterbalance [3], kangaroos use their tail as an
additional leg support during low-speed walking [4] and dinosaurs
used their tail in a tripod-like stance to lift their front legs [5]. In
all cases, the tail provides a mechanism separate from the legs’
ground contact to impact the dynamics of the robot—a beneficial
feature in unstructured environments in which leg ground contact
cannot always be guaranteed.

However, bioinspired and biomimetic designs of legged robots
typically omit robotic tails in favor of solely utilizing the legs for
propulsion, maneuvering, and stabilization. In quadrupedal robots,
this necessitates four spatial legs with a minimum of three active
degrees-of-freedom (DOF), resulting in systems with at least
12DOF. These DOFs must then be controlled by sophisticated
algorithms that simultaneously produce propulsion, maneuvering,
and stability. Furthermore, loss of ground contact severely ham-
pers the robot’s ability to stabilize, as the ground contact loading
at the feet is what stabilizes the system.

This research proposes utilizing a spatial, articulated tail to off-
set some of the required leg complexity into a single additional
appendage. Figure 1 illustrates the tailed-quadruped system that is

considered in this analysis. A quadruped constructed from four
robotic modular leg (RMLeg) [6] units is used as the legged robot
subsystem, and the roll-revolute-revolute robotic tail (R3RT) is
used as the articulated tail subsystem [7]. Each RMLeg is a 2DOF
planar mechanism that is used to generate propulsion; the tail is
used to generate the loading to provide maneuverability and
enhance the quadruped’s inherent stability.

This paper is organized as follows: Sec. 2 outlines prior work in
both robotic tails and hyperredundant robot control. Section 3
describes the robotic tail subsystem design and model. Section 4
defines the outer- and inner-loop control laws used to implement
the desired maneuvering and stabilization behaviors. Section 5
describes the quadruped subsystem design, gait planning, and
modeling. Section 6 presents the simulation results for the

Fig. 1 RMLeg quadruped with an attached R3RT mechanism
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maneuvering and stabilization case studies, and Sec. 7 presents
results generated with experimentally measured tail loading. Sec-
tion 8 concludes the paper and highlights planned future work.

2 Background

This section provides an overview of prior work in the fields of
robotic tails (Sec. 2.1) and hyperredundant robot control
(Sec. 2.2).

2.1 Robotic Tails. The dominant paradigm for robotic tails in
the literature is single-mass, pendulum-like tails operating with
1DOF or 2DOF [8]. The 1DOF tails can operate in the pitch
[9–11], yaw [12,13] or roll [14] directions and the 2DOF tails can
operate in a combination of these two planes, such as pitch-yaw
[15,16], yaw-pitch [17], and roll-pitch [18].

Prior single-DOF pendulum-like robotic tails may also be cate-
gorized based on their functional use on-board a mobile robot. In
terms of propulsion, tails have been used to actuate walking [12]
and rapidly accelerate or decelerate [9]. In terms of maneuvering,
tails have been used for yaw-angle steering [13,14] and aerial re-
orientation [16]. In terms of stabilization, tails have been used for
disturbance rejection [18], center-of-mass (COM) adjustment
[17], and dampening undesired ground contact [11].

Many of these applications draw their inspiration from the ani-
mals described in Sec. 1. However, in order to justify the addition
of a tail to a legged robot, even if that tail reduces the required
complexity in leg design and leg control, the tail must provide
multiple functionalities for the system. Prior research into multi-
functional tails is more limited than those focusing on a single
use; prior multifunctional tail analyses include considerations for
propulsion and maneuvering [15], as well as maneuvering and sta-
bilization [10].

Articulated robot tail structures have also been studied. Three
approaches for this class of tail include the roll–revolute–revolute
robotic tail [7], the universal-spatial robotic tail [19,20], and the
discrete modular serpentine tail [21]. In addition to these novel
design concepts, preliminary studies have been presented into the
control of these structures to realize maneuvering and stabilization
behaviors [22,23]. Of particular importance are results from
Ref. [7] which demonstrate the significant improvements serpen-
tine tails offer over pendulum-like tails in terms of generating
loading which positively impacts the system dynamics.

2.2 Hyperredundant Robot Control. Hyperredundant robots
are systems that have a significantly higher number of joints than
task space coordinates. If these joints are conventional discrete
joints (such as revolute or universal joints), a hyperredundant
robot is also called a serpentine robot. If the robot is instead
defined by the continuous deformation of an elastic structure
(such as a spring-steel backbone or pneumatic core), a hyper-
redundant robot is also called a continuum robot.

Although a serpentine structure was chosen for the proposed
system’s robotic tail, the existing literature on serpentine robots
primarily focuses on ground-supported snake-like robots and con-
trollers designed to implement locomotion patterns. Furthermore,
much of the prior work associated with continuum robot control
focuses on cantilevered structures operating as manipulators.
Although the R3RT is not used a robotic manipulator in this
research, many of the same guiding principles apply.

Hyperredundant robot controllers are primarily differentiated
by whether or not they utilize a robot model in the control formu-
lation. Prior work into controllers that do not use a system model
include proportional–integral–derivative (PID)-based approaches
and neural-network-based approaches. Examples of PID-based
controllers include individual joint controllers [24] and a
proportional–derivative–controller acting based on segment curva-
tures [25]. Neural-network-based controllers utilize online tuning of
the neural network during operation of the robot, as either a

standalone controller [26] or as a feedforward contribution to a con-
troller that also employs a model-free nonlinear feedback loop [27].
This approach is particularly beneficial for continuum-type robots
for which the robot’s continuous deformation presents a challenge
for state modeling.

Model-based approaches augment aspects of the model-free
approaches (specifically, PID-based control terms) with additional
considerations for the modeled kinematics and/or dynamics of the
robot. Prior work has utilized the robots’ Jacobians to map task-
space sensor data into the joint-space in real-time [28–30], and
dynamics-based controllers for vibration dampening have also
been demonstrated [31].

3 Tail Subsystem

This section describes the structure of the serpentine tail under
consideration for this analysis (Sec. 3.1), its associated dynamic
model (Sec. 3.2) and the sensing incorporated into the design
(Sec. 3.3).

3.1 Tail Design. Figure 2 shows the R3RT used as the tail
subsystem for this analysis. The R3RT consists of a rigid housing,
an actuation module, and two quasi-independently actuated tail
segments each consisting of six links. The rigid housing connects
to the quadruped subsystem and provides support for two coaxial
bearings in which the actuation module is mounted. A slip ring is
incorporated into the rigid housing that accommodates all of the
wiring (power and communication) required for the actuation
module, allowing for continuous roll rotation of the actuation
module relative to the rigid housing.

The actuation module contains the three gearmotors (100 W
Brushless DC Maxon motors with 15:1 reduction Maxon gear-
heads) used to actuate the R3RT. For the roll DOF, a spur gear/
internal gear pair (3:1 reduction) is mounted between the roll-
DOF gearmotor and rigid housing. For the two segments’ bending
DOFs, a bevel gear pair (2:1 reduction) is mounted between the
two gearmotors and their associated cable spool. A microcontrol-
ler and 3 motor drivers are also incorporated into the actuation
module to operate the motors in torque control mode.

The articulated tail structure consists of 12 links serially con-
nected to one another and the actuation module through parallel
revolute pitch joints. Two actuated segments are created by two
pairs of cables that route along the links: the first segment is cre-
ated by terminating a cable pair at link 6, and the second segment
is created by terminating a cable pair at link 12. Five equal-pitch
gear pairs within each segment ensure the six relative joint
angles in that segment are equal, and cable routing along nested
cylindrical surfaces ensures that cable displacements are equal
and opposite, allowing a single spool to drive each cable pair. The
segments’ actuation is decoupled by utilizing an S-curve cable
routing path for the segment 2 cabling through segment 1. Addi-
tional detail on the design of the R3RT can be found in Ref. [7].

3.2 Tail Model. The R3RT’s kinematic state may be repre-
sented by three variables: the roll angle u and the segments 1 and

Fig. 2 R3RT subsystem design
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2 relative joint angles h1 and h2. Only two relative joint angles are
needed to represent the state of the 12DOF tail structure due to the
ten kinematic constraints imposed by the ten gear pairs. These
state variables are collected into the state vector q¼ [u, h1, h2]T.

The three control inputs for the R3RT are the actuation module
torque s0, the segment 1 spool torque s1, and the segment 2 spool
torque s2. These input torques are collected into the control input
vector u¼ [s0, s1, s2]T.

The tail’s dynamic equations of motion can be organized into
the form shown in Eq. (1), where M(q) is the inertia matrix,
Cðq; _qÞ _q is the tail’s centripetal and Coriolis loading effects, g(q)
is the tail’s gravitational loading, and T is the actuation transmis-
sion matrix

MðqÞ €q þ Cðq; _qÞ _q þ gðqÞ ¼ Tu (1)

These equations are constructed by calculating the net moment
at each joint due to the inertial and gravitational loading effects
acting downstream of the joint (i.e., on links j� i for joint i) and
the gearing and actuation loading effects acting across the joint
(i.e., coaxial force pairs acting on bodies separated by joint i). The
component of this net joint moment aligned with the joint’s revo-
lute axis of rotation is prescribed to be zero, as a revolute joint
cannot support a moment about its axis. These 13 equations are a
set of differential-algebraic equations defined by three differential
variables (q) and ten algebraic variables (the gear pairs’ contact
forces). Algebraic manipulation can be used to reduce these 13
differential-algebraic equations into the three ordinary differential
equations defined by Eq. (1).

The actuation transmission matrix accounts for the transmission
of the actuation along the tail. If friction is neglected, it is a con-
stant matrix due to the geometric similarity of the 12 serpentine
links. In this analysis, friction is not accounted for within the
dynamic model, but an empirical friction correction is added to
the calculated motor inputs in Sec. 7.

Detailed formulations for the dynamics of the R3RT can be
found in Ref. [7].

3.3 Tail Sensing. The sensing incorporated into the tail
measures the roll and spool angles and estimates tail motor speeds
during operation. Roll and spool angles are measured by absolute
encoders (U.S. Digital MA3-P10-125-N) coupled between the
rigid housing and actuation module (for the roll angle) and
between the actuation module and spool (for the spool angles).
Motor speeds are estimated utilizing incremental encoders (U.S.
Digital E4T-360-236-DHMB) mounted on the gearmotor rotor’s
rear shaft.

4 Tail Control

Figure 3 illustrates the controller used to operate the tailed-
quadruped. Outer-loop control laws (Sec. 4.1) plan desired tail

trajectories designed to implement maneuvering and stabilization
behaviors in the system, and an inner-loop control law (Sec. 4.2)
is designed to calculate the u(t) trajectory needed to implement
the desired tail state trajectory.

4.1 Outer-Loop Control. Two outer-loop controllers are
considered in this analysis: a maneuvering controller capable of
generating yaw-angle displacements of the tailed-quadruped
during locomotion, and a stabilizing controller capable of prevent-
ing the quadruped from rolling over due to a destabilizing
disturbance.

4.1.1 Maneuvering Control. The maneuvering controller in
this case study will generate a dynamic tail motion designed to
change the heading angle of the robot without destabilizing loco-
motion. Although this functionality has been studied in various
forms in previous work [7,22,23], a novel method of trajectory
planning is considered here to regulate motor torque throughout
the tail trajectory and improve motor power output by prescribing
greater angular accelerations when angular velocity is low, and
lower angular accelerations when angular velocity is high.

In this approach, the two segments’ joint angles are prescribed
to be equal (h¼ h1¼ h2), and the joint angle trajectories are

defined based on a prescribed profile for the product _h€h between

the angular velocity _h and acceleration €h, shown in Fig. 4. This
product is a kinematic analog to the motor’s power output, as
there is a direct relationship between angular acceleration and
motor torque.

From t0 to tA, the product increases from zero to the value
_hðtAÞ €hn, where €hn is the peak joint angle acceleration. In this

phase, due to the low _h, a profile for €h is prescribed using Eq. (2)

instead of dividing a desired _h€h trajectory in this time span by _h

€h tð Þ ¼
€hn

t� t0

tA � t0ð Þ=2
if t0 � t � 1

2
t0 þ tAð Þ

€hn if
1

2
t0 þ tAð Þ < t � tA

8>><
>>:

(2)

From tA to tB, €hðtÞ is defined to maintain a constant product of
_h€h ¼ _hA

€hn ¼ g as defined in Eq. (3), where _hA ¼ _hðtAÞ. From tB
to t1, the defined €h is linearly scaled to zero to ensure €h1 ¼ 0

€h tð Þ ¼

g
_h

if tA < t � tB

g
_h

t1 � t

t1 � tB
if tB < t � t1

8>><
>>:

(3)

Equation (4) defines the trajectory from t1to t2, which is the
mirror opposite of the €h trajectory from t0 to t1

Fig. 3 Tailed-quadruped control concept
Fig. 4 Desired trajectories for joint velocity/acceleration prod-
uct and joint acceleration
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€h tð Þ ¼

� g
_h

t� t1
tC � t1

if t1 < t � tC

� g
_h

if tC < t � tD

�€hn if tD < t � 1

2
tD þ t2ð Þ

�€hn

t2 � t

t2 � tDð Þ=2
if

1

2
tD þ t2ð Þ < t � t2

8>>>>>>>>>>><
>>>>>>>>>>>:

(4)

The desired _hðtÞ and hðtÞ trajectories are found by integrating

the defined €h trajectory once and twice from the initial conditions
_h0 and h0. From these bending angle trajectories, a desired state
trajectory qd and its derivatives _qd and €qd may be calculated by
setting u¼ p/2.

For fixed time span parameters, there is a functional relation-

ship between the joint angle displacement Dh¼ h2 � h0 and €hn

(i.e., Dh ¼ fnð€hnÞ). Simulations over a range of €hn values can be
used to characterize this functional relationship, and inverting it

allows for a €hn value to be selected to implement the desired
change in heading angle, similar to the single-tail motion analysis
in Ref. [23].

4.1.2 Stabilization Control. The stabilization controller in this
case study will prescribe a tail motion that utilizes the tail’s iner-
tial and gravitational loading to counteract a destabilizing load
applied to the quadruped. Based on the quadruped’s geometry and
mass distribution, the moment of inertia with respect to the roll
axis yQ is significantly lower than that of the pitch axis xQ (axes
defined in Fig. 1), making roll angle destabilization more likely
for a lower magnitude disturbance. Therefore, the stabilization
controller is designed to counteract a destabilizing moment about
this roll axis.

Roll destabilization can be detected from the quadruped’s roll
angle q. During steady-state locomotion, slight variations in q are
expected, and the range of acceptable roll angles without requiring
tail intervention can be defined as q � [�qb, qb]. Beyond these
limits, the tail should be actuated to oppose the destabilizing roll
influence. The required stabilizing tail actuation is parameterized
by the variable j � [�1,1], defined in Eq. (5) and shown in Fig. 5,
where qlim is the roll angle magnitude beyond which |j|¼ 1, “sat”
is the unit saturation function, and “sgn” is the signum function.
The �sgn(q) term ensures that stabilizing control action acts in
opposition to the quadruped’s roll angle.

j ¼
0 if jqj � qb

sat �sgn qð Þ
jqj � qb

qlim � qb

� �
if jqj > qb

8<
: (5)

When |j|> 0, a methodology for mapping j into a second-order
continuous tail trajectory is needed; the variable w is used to
parameterize this continuous trajectory. A unit damped harmonic
oscillator for w is defined in Eq. (6) with j as its forcing function,
where n and xn are the oscillator’s damping ratio and natural fre-
quency, respectively. To minimize the system’s settling time with-
out overshoot, n is set equal to 1, and xn is defined in Sec. 6

1

x2
n

€w þ 2n
xn

_w þ w ¼ j; w0;
_w0

n o
¼ 0 (6)

The w trajectory is used to continuously transition the tail state
q from its nominal tail configuration q0 during steady-state loco-
motion to the stabilization steady-state configuration qst, as
defined in Eq. (7). The states q0 and qst are determined based on
considerations for (1) symmetry, (2) gravity, and (3) conservation
of angular momentum. To simplify analysis, h1 � 0 to avoid
equivalent tail states such as q¼ [0, h1, h2]T¼ [180 deg, 2h1,
�h2]T. In addition, the discussion below will assume q> 0; a par-
allel justification can be made for q< 0

q ¼ q0 þ ðqst � q0Þw (7)

First, based on symmetry, u0¼ {0, 6180 deg} so that the tail
can respond equivalently in either direction. Second, to maximize
the gravitational loading at qst with respect to the roll axis,
define qst¼ [�90 deg, 15 deg, 0]T. Third, conservation of angular
momentum dictates that the relative rotation ust�u0 should be
the same sign as q to induce rotation in the opposite direction
in the quadruped. Based on these conditions, q0¼ [�180 deg, h1,0,
h2,0]T and qst¼ [�90 deg, 15 deg, 0]T, with free choices of h1,0

and h2,0 based on other considerations. This analysis will define
(h1,0, h2,0)¼ (15 deg, 0) to minimize the required tail motion dur-
ing stabilization.

4.2 Inner-Loop Control. The inner-loop controller utilized
in this analysis is a model-based feedback linearization controller
that prescribes both feedforward inputs based on the modeled tail
dynamics and feedback inputs based on the measured tail error.

Equation (8) defines the feedback linearizing controller. In this

equation, M̂ denotes the estimate of the corresponding matrix or
vector (in this case, M) from Eq. (1), ~q is the error q � qd between
the measured and desired states and K0 and K1 are outer-loop lin-
ear feedback gains. This analysis will assume that the estimate for
a given matrix or vector matches the actual matrix or vector (i.e.,

M̂ ¼ M); future work will consider potential modeling errors and
the inclusion of additional control terms to compensate for these

u ¼ T̂
�1ðM̂ð€qd � K0~q � K1

_~qÞ þ Ĉ _q þ ĝÞ (8)

This controller leads to the closed-loop system dynamics shown
in Eq. (9), which is canonically asymptotically stable if K0 and K1

are positive definite

€~q þ K1
_~q þ K0~q ¼ 0 (9)

5 Quadruped Subsystem

This section presents the quadruped design (Sec. 5.1) used in
conjunction with the R3RT to study the tail’s maneuvering and
stabilization capabilities, along with the gait planning used to pro-
pel the quadruped (Sec. 5.2) and the quadruped’s dynamic model
(Sec. 5.3).

5.1 Quadruped Design. Figure 6(a) shows a side-view sche-
matic diagram of the quadruped robot composed of four RMLeg
units [6]. Each RMLeg is a 2DOF planar mechanism composed of
two serially connected four-bar mechanisms analogous to a thigh
and shin.

The two four-bar mechanisms have parallelogram topologies
(opposite links have equal lengths), which results in double-
rocker behavior. This behavior constrains the RMLeg’s foot link
orientation to remain parallel to the quadruped body link as the
thigh and shin links move. This guarantees a parallel flat foot
orientation with respect to the quadruped body without needing anFig. 5 Stabilization actuation parameter j definition
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additional actuator between the shin and foot links. On flat surfa-
ces, flat feet provide a more stable support polygon compared to
feet with a point or line contact.

One of the main benefits of using a four-bar mechanism is
actuation decoupling. The thigh is actuated directly by a motor
mounted within the quadruped body, and the shin is actuated by a
motor mounted on one of the two thigh links. A 1:1 timing belt
transmits the thigh motor actuation to the shin. Mounting the shin
motor to the thigh instead of the hip allows this actuator to control
the relative motion between the thigh and shin links and not have
to compensate for the thigh actuation.

Four compliant toes are incorporated into the foot to help main-
tain planar contact between the foot and ground even when the
quadruped’s body is not parallel to the ground. Instead of tipping
along one of the sides of the foot, the toes will extend and retract
in response to the quadruped’s pitch and rolling. However, once
these toes reach their displacement limits, loss of ground contact
for one or more toes (and possibly the foot) will occur.

5.2 Gait Planning. The quadruped robot is designed to
provide forward locomotion in a single direction, with the tail
capable of performing steering (maneuvering) and disturbance
rejection (stabilization) functions. To realize a forward quasi-
static walking gait, a trot gait pattern is utilized in which the legs
alternate between a support phase, in which the foot is in contact
with the ground, and a lift phase, in which it is airborne. The sup-
port phase foot trajectory is a straight line with constant velocity,
and the lift phase is designed to raise the foot and move it in front
of its hip for its next support phase.

Trot gaits provide quadrupeds with planar foot contact a quasi-
statically stable walking gait if the quadruped’s zero-moment
point falls within the support polygon created by the geometric
boundary created by all of the ground contact points at a given
time. Figure 6(b) illustrates the gait diagram for this type of trot-
ting. The plot’s horizontal axis spans the normalized time for a
single foot trajectory cycle. The line segment for each leg repre-
sents the support phase, from landing (square at start) to takeoff
(circle at end). The quadruped alternates between diagonal pairs
of legs in contact with the ground. Therefore, two support phase
feet move cooperatively (i.e., in the same direction) for forward
walking and the system zero-moment point can be configured
such that it always falls within the support polygon.

5.3 Quadruped Dynamic Simulation. A three-dimensional
computer-aided design model of the RMLeg quadruped was
created in SOLIDWORKS and exported to MSC ADAMS, a multibody
dynamic simulation software. This software enables a comprehen-
sive simulation and motion analysis capable of solving for the
kinematics and dynamics of the quadruped.

In addition to the system’s inertial loading effects based on the
imported computer-aided design mass properties and geometry,
loading effects are incorporated into the model for the tail loading,
gravity, and contact between the 16 toes and ground. The contact
loading between the toes and ground are defined by setting stiff-
ness, force exponent, damping and penetration depth, and the

associated friction is defined using a continuous velocity-
dependent calculation of the friction coefficient. The desired leg
trajectories are prescribed as kinematic constraints on the hip and
knee joints of each leg and MSC ADAMS implicitly calculates the
joint torques used to drive the associated joints.

MSC ADAMS/Control was used to export the plant simulation to a
SIMULINK block with six inputs (three components each of tail force
and moment) and four outputs (quadruped forward velocity and
yaw/pitch/roll angles).

6 Simulation Results

This section interfaces the tail and quadruped models described
in Secs. 3 and 5 and implements the controllers from Sec. 4 to
analyze the tail’s ability to maneuver (Sec. 6.2) and stabilize
(Sec. 6.3) the tailed-quadruped system described in Sec. 6.1.

6.1 Simulation Parameters. For this analysis, the existing
R3RT and RMLeg subsystem prototypes were used as the base-
line for analysis. Specifically, the geometric, mass, and inertia
properties of these prototypes in Refs. [6] and [19] were utilized,
with modifications made as discussed below.

For the quadruped, the mass properties of the simulated system
needed to match the loading capacity available for the existing
robotic tail. To accomplish this, the mass of the quadruped frame
and legs were scaled down to 30% of their nominal values to ena-
ble the tail to achieve meaningful yaw rotation with a single tail
motion. Connectors were needed between the fore and aft pairs of
legs to provide sufficient spacing for the feet, and an additional
proof mass in the head was added to help balance the cantilevered

tail. The nominal quadruped mass mQ and body-frame inertia I
Q
Q

are defined in Eq. (10) at the quad COM. This inertia does change
during locomotion due to the leg motion, but this is calculated and
accounted for automatically by MSC ADAMS

mQ ¼ 4:876 kg; I
Q
Q ¼

0:1723 0:0007 �0:4
0:0007 0:4343 0:0001

�0:4 0:0001 0:4291

2
4

3
5 kg �m2

(10)

The quadruped’s nominal gait during both simulations generate
an average forward velocity of 750 mm/s with a step length of
250 mm (1.5 gait cycles per second) and a maximum foot lift of
50 mm.

For the tail, 1.4 kg is distributed along the tail length. The 12
links along the tail are 40 mm long, their COMs are modeled as
36 mm from their proximal revolute joint, and their cylindrical
cable-routing surfaces are 50 mm in diameter.

6.2 Maneuvering Case Study. For the maneuvering case
study, the loading generated by a single tail motion was applied to
the quadruped during locomotion to observe the resulting quadru-
ped yaw rotation.

During preliminary simulations for the maneuvering case study,
it was found that the friction at the feet was a severely limiting
factor for effective turning with a reasonable tail mass. With a
dynamically stable gait, this challenge could be mitigated by
choosing to actuate the tail during an airborne gait phase in which
all legs are lifted from the ground. However, for the quasi-
statically stable gait currently under consideration, at least two
legs are in contact with the ground at all times.

To mimic an airborne gait phase in this analysis, a hop is added
during the walking trajectory to lift the quadruped off the ground
for 0.45 s and move the tail during this time. In addition, due to
the absence of friction between the ground and quadruped during
this time, the net rotation of the quadruped depends only on the
net rotation of the tail and not the duration over which that motion
occurs. However, this ground friction is beneficial when returning
the tail from its bent configuration after maneuvering to its

Fig. 6 (a) Side view schematic diagram of the quadruped sub-
system and (b) gait diagram
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nominal configuration: if the system were airborne during this
return, the generated yaw rotation would be undone.

Figure 7 illustrates the change in yaw-angle heading due to a
tail bend of 90 deg in segments 1 and 2. Unlike the maneuvering
results in Refs. [22] and [23], the heading angle magnitude monot-
onically increases. In those cases, friction acting against the
desired motion of the quadruped caused the quadruped angular
velocity to reach zero before the tail velocity reached zero during
the tail’s deceleration. Then, the tail’s continuing deceleration
induced an undesired rotation in the quadruped in the undesired
direction. In this case, angular momentum between the tail and
quadruped is conserved.

A key requirement of a robotic tail is that the loading generated
by the tail does not induce instabilities in the DOFs orthogonal to
the one under consideration. Figure 8 illustrates the associated
pitch and roll angle trajectories of the quadruped due to the
yawing tail motion. As shown, while the tail motion does induce
slight undesired displacements in each, these do not cause
destabilization.

Simulations were also generated for the case in which the tail
segments bend from �90 deg to 90 deg while the quadruped is air-
borne. However, the auxiliary loading generated by the tail in the
roll-direction induced instability.

Net changes to the quadruped’s yaw heading angle in excess of
the rotation that can be generated by a single tail motion may be
generated by performing multiple tail motions in sequence. As

discussed in Sec. 4.1.1, the functional relationship between €hn and
the net change in yaw-angle heading may be developed using sim-
ulations, to allow use of the multiple tail motion maneuvering
algorithm described in Ref. [23].

6.3 Stabilization Case Study. For the stabilization case
study, an impulsive moment of magnitude Md is applied for 0.2 s
in the roll direction of the quadruped during locomotion. Without
active tail control, depending on the magnitude of Md, one of
three scenarios will occur.

(1) The quadruped’s gravitational loading will reject the dis-
turbance without significant change in roll angle. This
occurs in the range Md � [0, 10.1] N�m, in which the quad-
ruped’s roll angle |q| remains less than 3 deg. Thus, the

moment disturbance threshold for nontrivial roll-angle var-
iations is Md,0¼ 10.1 N�m.

(2) The quadruped will experience nontrivial roll displacement
(jqj> 3 deg), but the disturbance is not sufficient to tip the
quadruped and destabilize it. This occurs in the range Md

� [Md,0, Md,0þ 15.5] N�m. Thus, the additional moment
disturbance beyond Md,0 the quadruped can accommodate
without destabilizing is Md,Q¼ 15.5 N�m.

(3) The disturbance is sufficient to tip the quadruped and desta-
bilize the system in the roll DOF. Without active stabiliza-
tion, this occurs when Md>Md,0þMd,Q. However, when
the tail is used to actively stabilize the quadruped using the
controller detailed in Sec. 4.1.2, a significant improvement
in roll angle stability is observed.

The parameters used for the controller are defined in Eq. (11):
no control action is taken for roll angle disturbances less than
3 deg, full control action is applied once the roll is greater than
13 deg, and the settling time of the tail position is 3n/xn¼ 0.15 s

qb ¼ 3 deg; qlim ¼ 13 deg; xn ¼ 20 rad=s (11)

Figure 9 illustrates the roll-angle trajectory of the quadruped
for a disturbance of magnitude Md ¼ Md,0þMd,Q. Active tail-
based stabilization provided a 68% reduction in peak roll-angle in
relation to the passive case, which allows the system to further
accommodate additional disturbance loading.

Figure 10 illustrates the roll-angle q and control action parame-
ter j trajectories for disturbances of magnitude Md¼Md,0

þMd,QþDM for which DM � {0, 1.5, 3.0, 4.6, 4.7} N�m. The
maximum DM allowable before the tailed-quadruped destabilizes
is Md,T¼ 4.6 N�m, which represents a 30% improvement to Md,Q.

Fig. 8 Maneuvering case study pitch- and roll-angle trajectories

Fig. 9 Stabilization case study quadruped marginal stability
with and without tail control action

Fig. 10 Stabilization case study q and j trajectories for varying
disturbance magnitudes Md 5 Md,0 1 Md,Q 1 DM

Fig. 7 Maneuvering case study yaw-angle rotation
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As with the maneuvering case, the roll-stabilizing control
action should not destabilize the tailed-quadruped in the pitch
or yaw directions. Figure 11 illustrates the system’s pitch and
yaw trajectories due to the stabilizing tail motion when
Md¼Md,0þMd,QþMd,T. Although the tail does not destabilize
the system in the pitch direction, it does result in a net nonzero
yaw angle after the tail returns to its nominal configuration. This
heading error can then be compensated for using an appropriately
scaled maneuvering tail motion.

7 Experimental Results

This section utilizes the R3RT prototype in conjunction with
the quadruped simulation to verify the simulation-based results in
Sec. 6. The experimental setup is described (Sec. 7.1), and the
maneuvering (Sec. 7.2) and stabilization (Sec. 7.3) case studies
are considered with the tail prototype.

7.1 Experimental Setup. To augment the simulation-based
studies detailed in Sec. 6, a series of hardware-in-the-loop simula-
tions were conducted. Hardware-in-the-loop (HIL) simulations
use real, physical system hardware to replace one or more simu-
lated subsystems in an analysis. Although HIL simulations typi-
cally utilize a physical embedded system in conjunction with a
mechanical plant simulation, the distinct mechanical subsystems
of the tailed-quadruped lend themselves to this type of analysis.
As a precursor to full-scale implementation of the tailed-
quadruped in future work (Sec. 8), a prototype R3RT is used in
conjunction with a simulated RMLeg quadruped walking in a vir-
tual environment on flat terrain.

Figure 12 illustrates the experimental setup used in this section.
The R3RT prototype is mounted on a six-axis load cell (Sunrise
Instruments M3716B) to measure the force and moment generated
by the tail, which is then mapped into the equivalent force and
moment at the tail frame origin (this is the loading the simulated
tail calculated).

Control inputs for the tail experiments were generated by
recording the calculated control input trajectories u(t) and state
vector accelerations €qðtÞ during a simulation. Using dynamic
models of the actuation transmission mechanisms between the
roll DOF/spools and motors, these torques and accelerations
were mapped into motor current commands. In addition, an
empirical current offset was also added to overcome the fric-
tion within the actuation transmission mechanism and along
the tail.

The functional performance of the R3RT in terms of maneuver-
ing and stabilization is assessed in two ways. First, the loading
calculated by the simulated R3RT is compared to the loading
measured from the prototype R3RT. Second, the performance of
the prototype tail in terms of maneuvering and stabilization is
assessed using a HIL simulation.

Fig. 12 Tail hardware-in-the-loop experimental setup

Fig. 11 Stabilization case study pitch and yaw-angle
trajectories

Fig. 13 Maneuvering case study simulated and experimental loading comparison

Fig. 14 Maneuvering case study simulated and experimental
yaw angle trajectories
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7.2 Maneuvering Case Study. Figure 13 compares the simu-
lated and experimentally measured loading generated by the
maneuvering tail motion, and Fig. 14 compares the simulated
yaw-angle rotation due to the simulated and experimentally meas-
ured loading. To reduce the noise in the experimentally measured
trajectories, three experiments for each tail motion were per-
formed and the resulting loading averaged together.

The x-component of moment is the most critical in this case
study, and the increase in peak moment magnitude in the accelera-
tion phase coupled with a lower magnitude moment and longer
duration of the deceleration phase leads to the increased rotation
observed in the yaw angle for the experimental loading case.

The feedback linearization inner-loop controller used to gener-
ate the motor torque inputs in this analysis also shows significant
improvement in terms of lag time compared to the inner-loop
velocity controller used in Ref. [7]. In that work, the initial peak
loading was predicted to occur at 0.1 s, but the experimentally
measured initial peak loading did not occur until 0.3 s. As shown
in Fig. 13, the initial peak error is on the order of hundredths of a
second, on par with the sampling rate.

The friction compensation current offsets required for bending
the segments was significantly higher than anticipated, and likely
resulted in shortcomings in the tracking of the desired dynamic
trajectory. Future work will investigate methods to experimentally
measure and model friction within the tail mechanism, allowing
for more accurate control, particularly when coupled with tail
models that more accurately model the dynamic friction behavior.

7.3 Stabilization Case Study. For this case study, the u(t)
and €qðtÞ for the experimental trials were calculated for the case in
which Md ¼Md,0þMd,QþMd,T.

Figure 15 compares the simulated and experimentally measured
loading generated by the stabilizing tail motion, and Fig. 16 com-
pares the simulated roll-angle rotation due to the simulated and
experimentally measured loading. For the experimental loading
HIL simulation, the magnitude of the disturbance was reduced by
0.1 N�m, as the system was unstable for the simulation’s Md.

The z-component of moment is the most critical in this case
study; like the stabilization case, the tail simulation underesti-
mated the moment’s maximum and minimum magnitudes, but the
impact of this variation on the simulation’s predicted performance
of the robot is significantly less than the stabilization case. The
simpler actuation transmission mechanism between the motor and
roll DOF also required less friction compensation in relation to
the bending tail motions, providing for a more accurate simulation
of the tail behavior.

8 Conclusion

This paper has presented controllers designed to stabilize and
maneuver a quadrupedal robot. Outer-loop control laws have been
formulated for a yawing tail motion to turn the quadruped during
locomotion and a rolling tail motion to improve external roll-DOF
disturbance rejection during locomotion. An inner-loop controller
maps the desired tail trajectories generated by these outer-loop
controllers into tail inputs, and simulations have demonstrated
their efficacy in conjunction with a simulated quadrupedal plat-
form. Experiments utilizing the control inputs calculated for the
simulations validate the simulated loading profiles generated by
the tail and offer similar performance as observed from the HIL
experiments.

Future work will focus on the coupled simulation of the tail and
quadrupedal subsystems, as opposed to the segregated treatment
discussed in this paper. This will transition the quadruped model
from the MSC ADAMS-based simulation into the same simulation
framework as the tail. Improvements to the tail’s inner-loop con-
troller will also be studied to account for possible variations
between the simulated and experimental tail structures and to
modify the actuation input calculation to robustly account for
these uncertainties. The ultimate goal of this research is the full-
scale integration of the tail prototype with a quadrupedal system
to fully demonstrate the functionalities described herein.
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