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Abstract—The working principle of a SEA is based on
using an elastic material connected serially to the mechanical
power source to simulate the dynamic behavior of a human
muscle. Due to weight and size limitations of a wearable
robotic exoskeleton, the hardware design of the SEA is
limited. Compact and lightweight SEAs usually have noisy
signal output, and can easily be deformed. This paper uses a
compact lightweight SEA designed for exoskeleton gloves to
demonstrate immeasurable strain and friction force which can
cause an average of 34.31% and maximum of 44.7% difference
inforce measurement on such SEAs. This paper proposes two
data driven machine learning methods to accurately calibrate
and control SEAs. The multi-layer perception (MLP) method
can reduce the average force measurement error to 10.18%
and maximum error to 29.13%. The surface fitting method (SF)
method can reduce the average force measurement error to
8.06% and maximum error to 35.72%. In control experiments,
the weighted MLP method achieves an average of 0.21N force
control difference, and the SF method achieves an average
of 0.29N force control difference on the finger tips of the
exoskeleton glove.

Index Terms— Tactile sensor, SEA calibration, exoskeleton glove.

|. INTRODUCTION
A. Exoskeleton and Tactile Sensors

LOSE to 19.9 million people in the U.S. suffer from
hand-related disabilities and have difficulty grasping
objects for day-to-day activities [1]. Building an affordable
robotic exoskeleton glove that can help these individuals
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perform grasping-related tasks regularly encountered in their
daily lives could significantly improve their quality of life.

Lee designed and integrated the iSAFER glove using rigid
linkage and cable transmission with two force-sensitive resis-
tors (FSR) on both the fingernail and finger pad side to adapt
to the contact angle change [2]. However, FSRs suffer from
issues related to repeatability [3]. There are over +50% errors
on random raw data of FSR force sensors.

Ma, et al. designed a robotic exoskeleton glove using rigid
actuators and side-mounted strain gauges as a tactile sensor
to perform force control [4]. The advantages of using strain
gauges include comfort and their compact size. However,
this method requires calibration for each user to achieve an
accurate result.

Diez, et al. proposed a novel design of a robotic exoskeleton
using an optical force sensor as a tactile sensor, which resolved
the accuracy problem when using FSRs [5]. This approach
could be a great solution, except that the sensor’s size is too
large for an exoskeleton glove application.

B. Series Elastic Actuators

Using Series Elastic Actuators (SEA) may be a practical
option for a high accuracy exoskeleton glove after reviewing
the previous methods. The original SEA design was proposed

republication/redistribution requires IEEE permission.
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Fig. 1. Series elastic actuator working principle flowchart.

by the MIT Artificial Intelligence Laboratory in 1995 [6].
In the original design, a torsion spring is connected in series
between the output shaft of an electric motor and the SEA
output shaft. The output force is calculated by measuring
the angle of twist in the torsion spring. Compared to rigid
actuators, advantages of using SEAs include accurate force
sensing and wider control bandwidth. Springs provide more
linear and repeatable force-sensing than FSRs. Springs can
also act as low-pass filters to filter out the high-frequency
motion, reducing the control speed leading to wider control
bandwidth. The structure and force calculation of SEAs is
explained in Fig.1. Following the original SEA design, a wide
variety of SEAs have been used in robotic exoskeletons.
Kim, et al. designed hydraulic SEAs to be used in exoskeleton
assisted walking, and sit-to-stand (SIT) motions [7]. Kar-
avas, et al. designed electric SEAs for joints used in lower
limber exoskeletons [8]. Those designs provide accurate force
control and high output force. However, those designs required
large hydraulic or electric power sources with metal housings
and output shafts. The main challenges of applying the SEAs
mentioned above to a robotic exoskeleton glove are the size
and weight.

Work done in previous research built several lightweight,
compact SEAs for robotic exoskeleton gloves to reduce the
size and weight. The primary purpose of using SEAs on an
exoskeleton glove is as tactile sensors to provide accurate force
measuring. Proper force measuring on fingertips using SEAs
requires high rigidity of the elastic material’s exoskeleton and
low stiffness. High rigidity usually leads to bulky designs, and
low stiffness will restrict the maximum output force. Most
of the previous research either suffered from inaccurate force
feedback due to the deformation of the exoskeleton or deficient
force output that cannot fulfill user needs.

Force calibration is essential for performing force feedback
control with SEAs. The feedback control will not work without
calculating the correct amount of force generated by the SEA.

This paper proposes a method to calibrate and design a
control scheme for compact, lightweight SEAs using multi-
layer perception (MLP). Implementing the MLP method is
then compared against those found using a surface fitting (SF)
approach, which is considered a commonly used technique.
After calibration, these SEAs can be used as accurate tactile
sensors on a robotic exoskeleton glove. The calibration meth-

A potentiometer for the human side
B —
S ——

A fingertip part

Q)

E)

Fig. 2. Five existing examples of SEA and Exoskeleton Glove:
A) An index finger exoskeleton with series elastic actuation for reha-
bilitation [9]. B) Series Elastic Transmission hand exoskeletons [10].
C) A wearable and force-controllable hand exoskeleton system [11].
D) A general purpose robotic hand exoskeleton with series elastic
actuation [12]. E) A robotic glove system for patients with brachial plexus
injuries [13].

ods proposed in this paper can be easily applied to SEAs with
similar structures.

[l. LITERATURE REVIEW

Researchers have been working for years to develop SEAs
for exoskeleton gloves.

Bianchi, et al. proposed a novel design of a titanium alloy
exoskeleton glove with SEA using elastic material with very
high stiffness [10]. This design is shown in sub-figure (B)
of Fig.2. The exoskeleton can output 20N of force on each
fingertip. There are three main disadvantages with this design.
First, due to the high force output of the SEA, the size of the
motor used on such SEA needs to be powerful, but large in
size. The size of the exoskeleton limited the number of motors
that can be used. The design coupled the middle, ring, and little
finger into one motion to keep the design compact. However,
those design features reduced the degrees of freedom (DOFs)
of such gloves. Second, the use of a high stiffness elastic
material makes the goal of accurate force measurement much
more challenging to achieve. Instead of using a normal spring-
like SEA, this design used a very high stiffness elastic material.
The elastic material has a stiffness constant of 58 N/mm.
This paper does not propose a valid control structure for
high stiffness force feedback control. Third, the titanium alloy
needed to meet the rigidity requirements brought on by using
a high stiffness elastic material significantly increases the cost
to manufacture such an exoskeleton.
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Fig. 3. The construction of the SEA and exoskeleton used in this research.

Agarwal, et al. designed a cable-driven exoskeleton with
rigid linkage using two SEAs on each finger [9]. This previous
design is shown in sub-figure A of Fig.2. Force control used
in this previous research has about 10% error and can output
0.3Nm peak torque on each SEA output joint. The main
issues with this design are the size and weight. To output
0.3Nm torque to one finger requires the use of two large
RE-Max 29 motors. The user needs to carry the power source
(motor, motor pulley, battery), which dramatically reduces
mobility.

Jo, et al. designed a compact linear SEA for use in robotic
exoskeleton gloves [11]. This design is shown in sub-figure C
of Fig.2. Accurate force control is achieved with a linear-
quadratic (LQ) tuned proportional-derivative (PD) controller
to control the distance and a disturbance observer (DOB) to
model the uncertainty. However, the spring constant is very
low (0.343 N/mm), which results in a maximum output force
of ON to the SEA output shaft. In contrast, a normal healthy
20-29-year-old male can output a maximum of 450N on all
fingers, which is about 90N on each fingertip [14].

Refour et, al. designed a compact linear SEA for robotic
exoskeleton gloves, which can output 20N on each finger-
tip [12]. This design is shown in sub-figure D of Fig.2. One of
the main issues with this design is force accuracy. According
to the author, the SEA experiences 2-3N of output force error.
This error is measured at the SEA output shaft, which does not
include the error caused by the linkage mechanism itself. Due
to the unaccounted deformation of the plastic SEA housing
and thin aluminum linkage, the force output on the fingertips
may be inaccurate. Because of the inaccuracy in force output
on the fingertips, it may not be effective to sacrifice the SEA’s
space over FSRs.

Xu, et al. proposed a low-cost, compact, lightweight SEA
used in the RML exoskeleton [13]. This design is shown
in sub-figure E of Fig.2. This SEA has a high force output
of 40N at the SEA output shaft and 20N at each fingertip.
This size is desirable for exoskeleton applications. However,
this SEA suffered from rigidity and accuracy problems which
affected many of the other designs discussed previously. It uses
thin aluminum linkages with 3D printed plastic motor output
shafts and housing. Due to the high output and low rigidity,

the linkage motor output shaft on the SEA will deform.
This deformation causes the force output of the SEA to be
non-linear in relation to the strain of the elastic material in
the SEA.

I1l. SEA FORCE MODELING

This paper uses the SEA design presented in Xu, et al.’s
paper [13] as an example. This SEA is compact, lightweight,
low-cost, and provides sufficient force output(Maxium 20N on
fingertips). However, it exhibits noisy sensor reading, hard-to-
measure friction force, a back drive-able motor, and deform-
able linkages and SEA housing. These characteristics make
this SEA a good candidate to demonstrate the difficulty of
using traditional kinematics model-based calibration. The SEA
and exoskeleton overview is shown in 3. The index finger SEA
is used as an example to demonstrate the force calculation.

A. Series Elastic (SEA) Actuator Construction

The compact, lightweight SEA built for the RML glove
consists of a linear actuator and a linkage. Force on the
fingertips can be measured when these two parts are com-
bined. The first part is a regular elastic linear actuator with
motor, gearbox, lead crew, lead nut, spring, and output shaft.
The second part is an aluminum linkage that transfer force
from the linear actuator’s output shaft to the fingertips. Both
parts are described in the linear SEA portion of Fig.3.

B. SEA Force Calculation

The index finger SEA is showed in Fig.4. Theoretically,
when the SEA is not moving, the force can be calculated by
Eq.1. The encoder can sense the distance between DE and the
potentiometer can sense ZABC. CB and CE are constant and
can be directly measured. J/; can be calculated by Eq.2. Fpq
and Fy; can be compensated for with a constant value during
force calibration. R; is a variable that changes as the linkage
angle changes. The ratio varies for different force measuring
methods. This ratio is discussed in the following section.

Ft=(5l5XkS—Ffa)XRl—Ffl (1)
oly = cos(LABC) x CB — (DE — CE) 2)
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Fig. 4. SEA force calculation legend.

F; — force on linkage tip, perpendicular to the last linkage
oly — spring compression

Fyq — friction force of actuator

R; — SEA to linkage force transformation ratio

Fy; — friction force of linkage

C. Encoder

A 12 CPR Pololu quadrature magnetic encoder is attached
to a 12v Pololu micro-gear motor paired with a 380:1 gearbox.
The lead screw has a distance (mm) to revolution ratio of 20:1.
The actuator shaft movement 6DE in millimeters can be
calculated by Eq.3.

R 20
ODE = ch:r X Nepe = % X Nene

0DE — displacement of DE measured in millimeters

R;q — distance to revolution ratio of lead screw, 20mm:
Irev

Rg — output shaft to input shaft radio of gearbox, 380:1

N¢pr — count per revolution of encoder, 12

Nene — encoder count

D. Angular Potentiometer

A 15 to 345-degree angular potentiometer is placed on the
linkage to measure the linkage angle. Such potentiometer is
read through a 3.3v 12 bit ADC bus. This potentiometer’s
voltage is increased to 20.5v for better resolution. Due to
the voltage, the effective range can be calculated using Eq.4.
A 20 degrees mechanical offset is introduced to avoid over-
voltage damage to the micro-controller. ZABC is calculated
by Eq.5.

ERppy = Y00 o p = 33 3300 ~53.12195° (4)
por = "y Por =905 -
ERpo
/ABC = =22 « Pot — L0 + LS
Regac

Fig. 5. A) Horizontal mounted load cell used for force measurement,
B) Vertical mounted load cell used for force measurement.

53.12195°
~ —n x Pot —20° 4+ 15° >~ 0.012969

x Pot — 5° ©)

E R, — effective measuring range of potentiometer
Vade — adc bus reference voltage, 3.3v

Vi — source voltage of potentio eter, 20.5v

Rpor — measuring range of potentiometer, 330 degrees
Re, 4. — adc resolution, 12bit, 4096

Pot — raw potentiometer adc reading

L O — potentiometer offset angle, 20 degrees

/S — potentiometer start angle, 15 degrees

E. Force Measurement

Force measurement is usually performed using a load cell.
However, measuring force directly from the linkage end can be
complicated as it is difficult to place the load cell perpendicular
to the last linkage. In this research, the force is measured
by two different load cells placed at a different location to
accommodate the linkage at different angles. The mounting
position is shown in Fig. 5. The force measured at the linkage
end is transformed back to the actuator output shaft through
inverse kinematics.

F. Linkage Force Transformation Ratio

The linkage design is based on [15]’s optimization. The
linkages force transformation ratio (R;) is critical for calculat-
ing the fingertips’ force. When the last linkage’s contact angle

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 03,2021 at 15:52:41 UTC from IEEE Xplore. Restrictions apply.



21124 IEEE SENSORS JOURNAL, VOL. 21, NO. 19, OCTOBER 1, 2021
A) A)
Horizental Force Transformation Ratio Curve Fitting
~ 1 ] ‘
o Ratio
L ——  2nd order
£ — 3rd order
% 05— 5th order 1
(o)}
o
(]
>
[0]
-
0 ‘ ‘ ‘ ‘
4 6 8 10 12 14 16
Angle in degrees
B)
. . . - B)
Vertical Force Transformation Ratio Curve Fitting Actuator Outbut Force
o 03 T T T T T i 25 : ; P :
&"’ © Ratio
=3 — 2nd order e
02871 3rd order

5th order

Leverage(F .
o
3

16 18 20 22 24 26 28
Angle in degrees

Fig. 6.  A) Small angle linkage transformation B) Large angle linkage
transformation.

is less than 90 degrees, the load cell is mounted horizontally.
When the last linkage’s contact angle is more than 90 degrees,
the load cell is mounted vertically. The relationship between
angle and the linkage force transformation ratio (R;) is shown
in Fig.6. The horizontal linkage force transformation ratio is
described as a fifth-order equation (Hy; ), and the vertical
linkage force transformation ratio is described as a second-
order equation (Vy;;). The combined equation is shown in
Eq.6.

Hs; if5°</ABC <16°
R,=[ fi T2 = = (6)

Vi if 16° < LABC < 28°

V. CHALLENGES WITH SEA FORCE CALIBRATION

Based on the previous section, the force output of the SEA
should be easy to calculate. PID position control is used to
drive the SEA. The calculated force is compared with the
measured force from a load cell.

Theoretically, the measured force and calculated force
should be similar. However, when testing the SEA, the mea-
sured force and calculated force have up to around 45%
difference in value. There exist two major problems that the
previous research has not addressed: friction and deformation,
which are discussed in the following subsections.

A. Friction Force on the Actuator

The spring constant of the spring used in this SEA is
4.2 N/mm. Using the traditional SEA force calculation that
the previous researchers used, the output force should match
the calculated force without the linkage affecting it. However,
the experimental result in Fig. 7 showed that the measured
force was generally lower than the calculated force because

Measured Force
Calculated Force
Friction Calibrated

Force(N)

200 300 400 500
Time(0.1s)

0 100

Fig. 7. Difference of the output force and measured force due to friction.
Measured friction force is 2.7N (0.68mm spring compression).

there exists a large amount of frictional force that affects the
output force.

B. Combined Friction Force of the Linkage and the
Actuator

The friction force has a significant impact on the output
force. This experiment is to find the combined friction force
caused by the linkage and the actuator. During this experiment,
the SEA with the linkage is actuated against a load cell at
various angles. The measured compression from the SEA will
increase, but the load cell’s reading remains zero. The load
cell’s reading will not be zero when the applied force is greater
than friction force, and the measured compression represents
the amount of friction force. Fig. 8 shows that the friction
force varies at different angles.

C. Actuator Shaft and Linkage Deformation

Theoretically, if the friction force is calibrated at a different
angle, the commanded output force should match the measured
force. However, the measured force was still significantly
smaller than the commanded force.

The difference is due to two parts on the SEA deforming
when force is applied. The resulting strain reduces the force
output to the fingertips. In Fig.9 part A, the actuator output
force is measured without the linkage attached. The encoder
reading remains the same, but the force starts to decrease.
In part B, the calculated force is calibrated for the measured
friction force. However, there exists over 48% difference
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Fig. 8. Different friction force measurement at different angles. A) Friction
is 2.1N (0.51mm spring compression), B) Friction is 2.4N (0.57mm spring
compression), C) Friction is 4.45N (1.06mm spring compression).
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Fig. 9. Force measurement error caused by deformation A) Incon-

sistency in force measurement caused by actuator shaft deformation,
B) Force measurement error caused by linkage deformation.

between the measured and computed force. This experi-
ment also showed that the difference increases as the force
increases.

V. FORCE CALIBRATION
Upper part in Fig.10 shows the kinematics calculation of
traditional force feedback control. According to experiments
in the previous section, sensor readings, spring compression,
and linkage transformation ratios are marked as yellow, which
means that these parts will have a small error due to sensor

noise. Newton’s Second Law of Motion is marked in blue,
indicating that it can be ignored due to the small mass of
the moving parts. The friction force and forces caused by the
deformation from the linkage and actuator output shaft are
difficult to measure. Thus, these are marked as immeasurable.
When combined, the error from sensors and immeasurable
values create a large error in the feedback force.

To solve this problem, the linkage and actuator need to be
viewed as a whole system and calibrated using a data driven
machine learning method based on load cell measurements.

A. Multi-Layer Perception Approach Force Predictor

A multi-layer perception model is used to predict the output
force based on the sensor reading. The network is shown in 10.
Except for the friction force and deformation of the actuator
shaft and linkage, the model will also take acceleration and
speed into consideration. The friction force has a different
direction while moving, and might be different under different
speeds and accelerations. Thus, the network has nine inputs,
including the raw potentiometer reading, the raw encoder
reading, the calculated spring compression, and the above
variables’ speeds and accelerations.

B. Network Tuning and Lost Function Selection

The calibration network is adjusted using hyper-parameter
tuning. The hyper-parameter tuning is focused on finding the
best layer, number of nodes, and cost function combination.
Two standard cost functions are compared.

The mean absolute error (MAE) is shown in Eq. 7. The
error measures the absolute difference between the prediction
and measured value. In this case, the difference means the
difference in force.

1 — .
E=—3 1y =l @
=1

The mean squared error (MSE) is shown in Eq. 8. The error
measures the square of the difference between the prediction
and measured value. This method punished outlier data more
than the MAE error.

l n
E=—2> (;—5) ®)
j=1

VI. FORCE CONTROL

When controlling the SEA, traditional force feedback con-
trol will not work well due to the low control frequency.
In a compact design mentioned in Xu, et al.’s [13] paper,
the onboard micro-controllers run ten threads and control
seven different SEAs, which means it does not have the
computational power to run the prediction network. Cloud
computing is required for prediction networks, but the delay
in cloud computing restricts the control speed. The control
frequency is set to 10Hz due to the limitation of wireless
connection over Bluetooth. The control is divided into two
parts: A high-level spring compression predictor based on
force sensor readings and a low-level compression controller.
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Fig. 10. Inaccurate kinematics calculation can be replaced by data driven
machine learning method to improve accuracy.

A. Low-Level Control Method and Control Margin

The low-level PID spring compression control runs on the
micro-controller. This low-level controller can ensure accurate
control of the spring compression and SEA position. This low-
level controller is also used as a safety feature to ensure that
the motor works correctly even when the wireless connection
is cut off.

The SEA used in this research has a noisy sensor reading
due to an analog sensor. The reference voltage fluctuates a
little bit, causing a loud sensor reading. Using a noisy angular
potentiometer directly as the low-level control input will cause
the compression reading to oscillate as the potentiometer
reading fluctuates.

The DC motor used in this research has a maximum speed
of 32,300 RPM with a low-resolution 12-bit CPR encoder
attached to the motor shaft. Twenty encoder counts are equiv-
alent to 0.1 mm in linear actuation. A 0.1 mm difference
is equivalent to around 0.5N output force from the actuator
output shaft. The requirement of accuracy in motor control is
very high.

The position control of the motor is separated from the
potentiometer reading to solve the fluctuating sensor reading.
The control structure is described in Fig.12. The PID motor

~—|Encoder Speed
|

Output

Hidden

Fig. 11. Flowchartdemonstrates feed forward SEA finger tip force control
using multi-layer perception compression prediction.

position control runs at 100Hz to ensure accuracy, while
the averaged potentiometer reading is updated at 10Hz. The
control margin is set to 0.l mm compression difference to avoid
oscillation.

B. High Level Multi-Layer Perception Compression
Predictor

This compression predictor is modified based on the force
calibration network. The network has seven inputs, including
the raw potentiometer reading, the raw encoder reading, com-
pression, the speeds and accelerations of the above variables,
and the desired force. The network is trained using the same
data used for calibration and is tuned using a hyperpara-
meter tuning method. This network can predict the desired
compression based on the current data. However, due to the
different linkage angles and friction force, the predicted data
is not accurate. New data is fed into the predictor to update
the predicted compression. The desired compression is sent
to the low-level compression controller to perform accurate
compression control.

C. Weighted Input Compression Predictor

In the real world, these input data fields do not weigh
equally. The desired force has a more significant impact on
the compression, and the angle and SEA travel distance have
less impact. The acceleration and speed have a low effect on
the compression. The input can be weighted to increase the
accuracy and robustness of the model. The weight of each
factor can be taken as a tuning parameter.

VIl. SURFACE FITTING

To compare the performance of the multi-layer percep-
tion (MLP) approach, a commonly used, low computational
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cost surface fitting approach is used as a comparison method
for calibration and control.

A. Calibration

For calibration, the inputs are angle and compression,
and the result will be the output force. The advantage of
this approach is the low computational cost. This method is
suitable for calibrating multiple SEAs in parallel on one micro-
controller. The disadvantage is that the speed and acceleration
are not taken into consideration which might affect accuracy.
When moving in different directions, the friction force also
acts in different directions. This method does not consider
friction force direction. This method does not use as much
computational power as the MLP approach by having fewer
inputs and only third-order linear regression. As a trade-off,
the accuracy might be lower.

B. Control

For controlling the SEA, this method can be used as a direct
substitute for the high-level multi-layer perception approach,
while the low-level control remains the same. Instead of
running on a separate computer and sending results back to the
micro-controller through a wireless connection, this method
can run on the micro-controller itself.

VIII. EXPERIMENTS AND RESULTS

A. Data Preparation

The data is collected using a load cell. As described in the
previous force measurement section, two load cells measure
force in different directions, and as such there are two differ-
ent reference force values based on two different directions.
The measured data must be pre-processed to be suitable for
training. We transform the force at the fingertip back to the
SEA output shaft using the linkage transformation ratio. The
force at the SEA output shaft is used as the reference value.
This value includes the deformation of the linkage, SEA output
shaft, and fiction force. Using this model, we can assume that
the system is ideal where no friction and deformation need to
be considered.

SEA force calibration model

T~

SEA Force(N)

Compression(mm)

Angle(deg)

Fig. 13. Surface fitted model (MAE) used for finger tip force calibration.

TABLE |
SEA FINGER TIP FORCE CALIBRATION RESULTS

Method || Loss function | Opt Network Struc | Error
MLP MSE 16-32 1.432
MLP MAE 8-16-32 2.13

SF MSE N/A 1.855
SF MAE N/A 0.987

For example, the force output of a SEA is 10N, while 5N of
that is lost in transmission. Thus, the net output force is SN.
After calibration, the result will show that the output is SN, and
it can be assumed that there is no loss in force transmission
to the fingertip.

The data set used for training contains 10,400 data points,
and the test data has 2,416 data points collected using two load
cells. Both the test and training data-set include data collected
from 12 different contact angles. We have also collected
validation data-set at a randomly selected angle with 140 data
points to verify the performance.

B. Force Calibration Results

The surface fitting (SF) model is shown in Fig.13. The
fitting used a 3rd order polynomial, and most points are fitted
to the surface. This graph shows that the force output is not
entirely repeatable. There exists a small amount of error in the
force output, even with similar angles and compression.

For multi-layer perception approach (MLP), the hyper-
parameter tuning result of each loss function is shown in
Tab. I. For the mean absolute error (MAE) loss function,
the optimal network has three layers, and each layer has
8,16,32 nodes. For the mean square error (MSE) loss function,
the optimal network has two layers, and each layer has
16,32 nodes.

The result of the multi-layer perception (MLP) model is
compared with the surface fitting (SF) method over the testing
data-set. The results are shown in Tab. I. For the MLP method,
using MSE loss function has 22% performance gain over the
SF method. When using MAE loss function, the SF is 72.5%
more accurate. The MSE loss function of MLP and MAE of
SF is selected to do further comparison.

Fig.14 shows a demo of the force prediction using the above
two methods over validation data-set. The MLP method using
MSE loss function has a better fit under 15N, while the surface
fitting has a better fit over 15N.
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Force prediction demo

— Measured
20~ |~ Surface fitting i
MLP

Force(N)
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Time(0.1s)

Fig. 14. Force calibration demo on validation data-set.

TABLE Il
AVERAGE FORCE CONTROL ERROR AND AVERAGE SETTLING TIME

Force | Method | Force error avg | . Settling time avg
5N SF 0.29N 0.32s
10N SF 0.41IN 0.50s
15N SF 0.18N 0.58s
5N MLP 0.24N 2.72s
10N MLP 0.30N 3.22s
15N MLP 0.IN 3.15s

S55S
S ESSISISSSSN

-
o

SRR
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5 ‘

ReShy
s

Compression(mm)
)]

SEA force(N) 0 Angle(deg)

Fig. 15. Surface fitted SEA finger tip force control model (MAE) used
for force control.

TABLE Il
SEA FINGER TiP FORCE CONTROL RESULTS
Method | Loss function | Opt Network Struc | Error
MLP MAE 8-16 0.19
MLP MSE 8-16 0.17
SF MSE N/A 0.35
SF MAE N/A 0.24

C. Force Control Results

The surface fitting model is shown in Fig.15. The fitting
used 3rd order polynomial, and most points are fitted on
the surface. This model describes the relationship between
compression, force, and angle.

The weighted MLP approach result is shown in Tab. III.
For the MAE loss function, the optimal network consists of
two layers, and each layer has 8,16 nodes. For the MSE loss
function, the optimal network consists of two layers, and each
layer has 8,16 nodes.

The weighted multi-layer perception model result is com-
pared with the surface fitting method’s result over the testing
data-set. The results are shown in Tab. III. For the weighted
MLP method, using both MAE and MSE loss function gives
better accuracy than the SF method. Weighted MLP method

Control Simulation

10 T T T T
. — Measured
€ 8 — Surface fitting
3 Weighted MLP
S 6
1] \
3]
s 4
§
o 2
0;, 1 1 L L f—
0 20 40 60 80 100 120 140

Time(0.1s)

Fig. 16. Force control simulation using validation data-set.
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Fig. 17. Force control result using real SEA.

using MSE loss function has 51.4% perform gain over the
surface fitting method using MSE loss function. The MLP
method using the MAE loss function has a 20.9% performance
gain over the SF method using MAE loss function. Thus,
we select MSE as the optimal loss function due to higher
performance gain over SF method. MAE loss function is
selected for SF method due to less performance difference
compare to weighted MLP method.

Fig. 16 shows a simulation of force control using the
validation data-set with the above two methods. This simu-
lation used measured force to predict the desired compression
and compared the predicted compression with the measured
compression. The MLP method has a better fit for low
compression, while the SF method fits better under higher
compression.

Fig. 17 shows the weighted MLP prediction control per-
formance vs. the surface fitting control in the real world.
The tests are performed at 10 degrees. The output force
on the SEA output shaft is set to 5N, 10N, and 15N. The
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desired force on the fingertip is calculated through the linkage
transformation ratio. The actual applied force is measured
using a load cell. The result shows that the MLP approach
has a slightly more accurate force output. The MLP approach
has an error within 0.3N, while the SF method has an error
within 0.6N. These experiments show that the force control
worked as expected when applied to real hardware.

The settling time increases as the output force increases
due to longer actuation time. Each control method is used
to output 5/10/15N force at ten different contact angles. The
linkage starting angle will be at 5 degrees. The settling time
is measured when the linkage comes in contact with the load
cell and ends when the output reaches 0.3N and 0.6N error
bound. The settling time and force error for different angles
is averaged and shown in Tab.Il.

The force control curve is not so smooth as expected due to
the angle measured by the potentiometer being slightly larger
than the actual value due to the moving motor’s voltage drop.
It takes time to drop back to a stable reading and this causes
a fluctuation in the reading.

IX. CONCLUSION

This paper proposed two methods to control and calibrate
a compact, lightweight linear SEA used in an exoskeleton.

This paper showed that friction force and linkage defor-
mation can cause an average of 34.31%, and a maximum
of 44.7% difference in force measurement on the compact,
lightweight SEA used in the RML glove. These findings
can be applied to most exoskeleton gloves that require force
transformation from the SEA to the fingertips. Calibration
is necessary for any compact, lightweight SEA used in an
exoskeleton glove. This paper proposed two methods for
calibration and control of the compact, lightweight SEA.

In calibration test, when using MSE loss function and the
test data-set, the MLP method is 22% more accurate. When
using MAE loss function, the SF is 72.5% more accurate.
When the test is conducted using the validation data-set,
both methods show similar performance. MLP method has
a slightly higher average difference but smaller maximum
difference. Both methods are over 65% more accurate than
kinematics calculation calibration. The performance compari-
son of both method on validation data-set is showed in Tab. IV.

In force control test, the MLP method is more accurate using
both MAE and MSE loss function. When using MSE loss
function, MLP method is 51.4% more accurate. When using
MAE loss function, MLP method is 29.1% more accurate.
When tested using a validation data-set, MLP method has
a slightly higher average difference but smaller maximum
difference. In real world testing with the SEA hardware,
the MLP method shows 27.5% less average force error than
the SF method. However, SF method costs 84.6% less aver-
age settling time than the MLP method. The surface fitting
approach can run on a micro-controller due to its simplicity.
The performance comparison of both methods on validation
data-set is showed in Tab. V.

Both methods have decent accuracy and acceptable settling
time. For applications which do not require low settling time
and have ample computational power, the MLP approach is
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TABLE IV
FORCE CALIBRATION PERFORMANCE COMPARISON
Method Error avg | Error max | Error avg | Error max
Kinematics Calc 3.55N 9.38N 34.31% 44.7%
SF(MAE) 0.886N 7.26IN 8.06% 35.72%
MLP(MSE) 1.120N 5.304N 10.18% 29.13%
TABLE V

SEA FORCE CONTROL SIMULATION PERFORMANCE COMPARISON

Method Error avg | Error max | Error avg | Error max
SF(MAE) 0.347mm 1.946mm 7.99% 38.15%
MLP(MSE) | 0.409mm 1.505mm 9.38% 30.00%

slightly more accurate. The surface fitting method is suitable
for micro-controller applications, where computational power
is limited. The surface fitting method is also ideal for appli-
cation where controlling speed is critical.

X. FUTURE WORK

There are three aspects of this research that can be further
improved.

First, a high dimension non-linear fit might have a more
accurate result over the linear surface fitting approach. This
approach might not be as accurate compared to the MLP
approach but might be faster.

Second, the training data-set only had around 10,000 data
points, which is considered a relatively small data-set. The size
of the data-set might affect the MLP approach. Extending the
data-set might further improve the accuracy of both surface
fitting and MLP approaches.

Third, this experiment proved that the SEA-based exoskele-
ton glove needs calibration to achieve a reasonable force
measurement result. The error arises when force is transformed
from the spring to the fingertips. Unlike most SEA applications
used in upper and lower limbs, the SEAs and linkage used in
exoskeleton gloves are usually made from plastic or aluminum
due to weight and size constraints. The above limitations
make these linkages and SEAs easy to deform and affect
the accuracy of the force output. These errors are hard to
overcome. To solve this issue, Chinpon, et al. and Park, et al.
proposed and verified a possible optical fiber solution to
substitute the SEA as an accurate tactile sensor [16], [17].
The optical fiber approach seems to have high accuracy while
remaining small in size.

ACKNOWLEDGMENT

The authors would like to thank Isaac Pressgrove and Liu
Yujiong who provided valuable advice and greatly assisted in
this research.

REFERENCES

[1] R. Bernstein, “Nearly 1 in 5 people have a disability in
the U.S.” Census Bur, Suitland-Silver Hill, MD, USA, Tech.
Rep. CB12-134, 2012. [Online]. Available: https://www.census.gov/
newsroom/releases/archives/miscellaneous/cb12-134.html

[2] J. B. Lee, “Development of intelligent exoskeleton grasping through
sensor fusion and slip detection development of intelligent exoskele-
ton grasping,” Ph.D. dissertation, Virginia Polytech. Inst. State Univ.,
Blacksburg, VA, USA, 2018.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 03,2021 at 15:52:41 UTC from IEEE Xplore. Restrictions apply.



21130

IEEE SENSORS JOURNAL, VOL. 21, NO. 19, OCTOBER 1, 2021

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

D. Giovanelli and E. Farella, “Force sensing resistor and evaluation of
technology for wearable body pressure sensing,” J. Sensors, vol. 2016,
pp. 1-13, Feb. 2016.

Z. Ma, P. Ben-Tzvi, and J. Danoff, “Sensing and force-feedback
exoskeleton robotic (SAFER) glove mechanism for hand rehabilitation,”
in Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf., 39th
Mech. Robot. Conf., vol. SA. Boston, MA, USA: ASME, Aug. 2015,
Paper VO5AT08A036, doi: 10.1115/DETC2015-46661.

J. A. Diez, A. Blanco, J. M. Catalan, F. J. Badesa, L. D. Lledd, and
N. Garcfa-Aracil, “Hand exoskeleton for rehabilitation therapies with
integrated optical force sensor,” Adv. Mech. Eng., vol. 10, no. 2,
pp. 1-11, 2018.

G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., vol. 1, Aug. 1995, pp. 399—406.
H.-G. Kim, J.-W. Lee, J. Jang, S. Park, and C. Han, “Design of an
exoskeleton with minimized energy consumption based on using elastic
and dissipative elements,” Int. J. Control, Autom. Syst., vol. 13, no. 2,
pp. 463-474, Apr. 2015.

N. C. Karavas, N. G. Tsagarakis, and D. G. Caldwell, “Design, modeling
and control of a series elastic actuator for an assistive knee exoskeleton,”
in Proc. 4th IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics
(BioRob), Jun. 2012, pp. 1813-1819.

P. Agarwal, J. Fox, M. K. O’Malley, A. D. Deshpande, and Y. Yun,
“An index finger exoskeleton with series elastic actuation for rehabili-
tation: Design, control and performance characterization,” Int. J. Robot.
Res., vol. 34, no. 14, pp. 1747-1772, Oct. 2015.

M. Bianchi et al., “Design of a series elastic transmission for hand
exoskeletons,” Mechatronics, vol. 51, pp. 8-18, May 2018.

I. Jo and J. Bae, “Design and control of a wearable and force-controllable
hand exoskeleton system,” Mechatronics, vol. 41, pp. 90-101, Feb. 2017,
doi: 10.1016/j.mechatronics.2016.12.001.

E. M. Refour, B. Sebastian, R. J. Chauhan, and P. Ben-Tzvi, “A general
purpose robotic hand exoskeleton with series elastic actuation,” J. Mech.
Robot., vol. 11, no. 6, pp. 1-9, Dec. 2019.

W. Xu, S. Pradhan, Y. Guo, B.-T. Pinhas, and C. Bravo, “A novel design
of a robotic glove system for patients with brachial plexus injuries,” in
Proc. ASME IDETC/CIE, 44th Mech. Robot. Conf., St. Louis, MO, USA,
2020, Art. no. VO10T10A042.

T. Nilsen, M. Hermann, C. S. Eriksen, H. Dagfinrud, P. Mowinckel, and
I. Kjeken, “Grip force and pinch grip in an adult population: Reference
values and factors associated with grip force,” Scandin. J. Occupational
Therapy, vol. 19, no. 3, pp. 288-296, May 2012.

T. Vanteddu, B. Sebastian, and P. Ben-Tzvi, “Design optimization of
RML glove for improved grasp performance,” in Proc. ASME Dyn. Syst.
Control Conf. (DSCC), vol. 1, Sep. 2018, pp. 1-8.

Y.-L. Park, S. C. Ryu, R. J. Black, K. K. Chau, B. Moslehi, and
M. R. Cutkosky, “Exoskeletal force-sensing end-effectors with embed-
ded optical fiber-Bragg-grating sensors,” IEEE Trans. Robot., vol. 25,
no. 6, pp. 1319-1331, Dec. 2009.

A. Chinpon, K. Thamaphat, M. Hansuparnusorn, and P. Limsuwan,
“A force measurement method using the optical fibre beam,” Pro-
cedia Eng., vol. 32, pp. 989-993, Jan. 2012, doi: 10.1016/j.proeng.
2012.02.043.

Yunfei Guo received the B.S. and M.S. degrees
in electrical and computer engineering from
Virginia Tech, VA, USA, in 2019 and 2020,
respectively, where he is pursuing the Ph.D.
degree in electrical and computer engineering.
His research interests are in machine learning
applications in embedded systems and ubiqui-
tous computing.

Wenda Xu received the B.S. degree in mechan-
ical engineering from Hunan University, Hunan,
China, in 2016, and the M.S. degree in mechan-
ical engineering from Columbia University, NY,
USA, in 2019. He is currently pursuing the Ph.D.
degree with Virginia Tech, VA, USA. His research
interests include robotics design, artificial intelli-
gence, and machine learning.

Sarthark Pradhan received the B.Tech. degree
in mechanical engineering from Indian Institute
of Technology Bhubaneswar, India, in 2017.
He is currently pursuing the master’s degree in
mechanical engineering with Virginia Tech, VA,
USA. His research interests include exoskele-
tons, humanoid robots, machine learning and
motion planning, and localization of robots.

Cesar Bravo received the B.S. degree in bio-
medical engineering, the B.A. degree in applied
math and science, and the medical (magna cum
laude) degree from the University of Puerto
Rico School of Medicine. After completing an
internship in general surgery and his residency
in orthopaedic surgery there, he completed a
fellowship in hand surgery at the Mayo Clinic
in 2005. He has been specialized in hand and
t_}\ upper extremity surgery with a particular interest

in problems of the elbow with Carilion Clinic since
2005. He is certified by the American Board of Orthopaedic Surgery in
orthopedics and hand surgery.

Pinhas Ben-Tzvi (Senior Member, IEEE)
received the B.S. (summa cum laude) degree
in mechanical engineering from the Technion-
Israel Institute of Technology, Haifa, Israel, and
the M.S. and Ph.D. degrees in mechanical
engineering from the University of Toronto,
Toronto, Canada. He is currently a Professor
of Mechanical Engineering and Electrical and
Computer Engineering, and the Founding
Director of the Robotics and Mechatronics
Laboratory, Virginia Tech. His current research

include robotics and intelligent autonomous systems,

interests
human-robot interactions, robotic vision and visual servoing, machine

learning, mechatronics design, systems dynamics and control,
mechanism design and system integration, and novel sensing and
actuation. His research program has been supported by NSF, NIH,
DARPA, ONR, USN, USAMRMC/TATRC, and NAVO. He has authored or
coauthored more than 165 peer-reviewed journal articles and refereed
papers in conference proceedings and the named inventor on at least
12 U.S. patents and patent applications. He is a member of ASME.
He was a recipient of the 2019 Virginia Tech Excellence in Teaching
Award, the 2018 Virginia Tech Faculty Fellow Award, the 2013 GWU
SEAS Outstanding Young Researcher and Outstanding Young Teacher
Awards, and several other honors and awards. He served as an
Associate Editor for IEEE ICRA from 2013 to 2018. He is also a
Technical Editor of the IEEE/ASME TRANSACTIONS ON MECHATRONICS,
and an Associate Editor of ASME Journal of Mechanisms and Robotics
and |IEEE Robotics and Automation Magazine.

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 03,2021 at 15:52:41 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1115/DETC2015-46661
http://dx.doi.org/10.1016/j.mechatronics.2016.12.001
http://dx.doi.org/10.1016/j.proeng.2012.02.043
http://dx.doi.org/10.1016/j.proeng.2012.02.043


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


