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Stable Grasp Control With a
Robotic Exoskeleton Glove
An exoskeleton robotic glove intended for patients who have suffered paralysis of the hand
due to stroke or other factors has been developed and integrated. The robotic glove has the
potential to aid patients with grasping objects as part of their daily life activities. Grasp sta-
bility was studied and researched by various research groups, but mainly focused on
robotic grippers by devising conditions for a stable grasp of objects. Maintaining grasp sta-
bility is important so as to reduce the chances of the object slipping and dropping. But there
was little focus on the grasp stability of robotic exoskeleton gloves, and most of the research
was focused on mechanical design. A robotic exoskeleton glove was developed as well as
novel methods to improve the grasp stability. The glove is constructed with rigidly
coupled four-bar linkages attached to the finger tips. Each linkage mechanism has one-
DOF (degree of freedom) and is actuated by a linear series elastic actuator (SEA). Two
methods were developed to satisfy two of the conditions required for a stable grasp.
These include deformation prevention of soft objects, and maintaining force and moment
equilibrium of the objects being grasped. Simulations were performed to validate the per-
formance of the proposed algorithms. A battery of experiments was performed on the inte-
grated prototype in order to validate the performance of the algorithms developed.
[DOI: 10.1115/1.4047724]
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1 Introduction
Exoskeleton gloves are used for various applications including

virtual reality, tele-operation, rehabilitation, etc. Exoskeleton
gloves have significant potential in the medical field which can
assist patients suffering from paralysis in their hands due to
stroke and other nerve-related diseases to grasp objects in their
daily lives. This paper focuses on the development of algorithms
for better control of grasp stability of the exoskeleton glove devel-
oped by Refour et al whose detailed design can be found in Ref. [1]
and its updated design can be found in Ref. [2].
Exoskeleton gloves can be broadly classified into two main cat-

egories: (1) soft gloves and (2) rigid gloves. Soft gloves generally
are lightweight, compact, and typically exhibit low motion hin-
drance. Soft gloves are generally actuated by cables or wire like
mechanisms such as cable actuated gloves [3], gloves with soft
tendon routing mechanism [4], and Bowden cable system for
remote actuation [5]. On the other hand, rigid gloves have better
force transmission, low friction loss, and can achieve better grasp
configurations. Few examples of rigid gloves developed so far
include the SAFER glove which uses Gaussian mixture regression
method to generate force trajectories for each of the fingers [6],
gloves that can exert high forces using underactuated serial
linkage mechanisms [7], and gloves that use a combination of
rigid linkages actuated by series elastic actuator (SEA) using
Bowden cable mechanisms [8]. The current glove is designed as a
rigid glove as shown in Fig. 1. It exhibits attributes such as high
force transmission and repeatability but is also compact and light-
weight like a soft glove since it uses a 1-DoF (degree of freedom)
linkage mechanism for each finger and uses SEA for its actuation.
Most of the previous research was heavily focused on the mechan-
ical design and kinematics analyses of the gloves. There was less
exploration carried out in the field of control of the gloves and sta-
bility of the grasp when the glove is holding an object. This paper is

concerned with the stability of the grasp and algorithms were devel-
oped to improve grasp stability.
Any robotic gripper or exoskeleton glove needs to apply suffi-

cient forces when grasping objects such that they satisfy the stability
conditions as defined by various researchers in Refs. [9–12]. For a
grasp to be stable, the forces being applied to the object should
satisfy the force and moment equilibrium, and the forces should
not be too large so as to prevent deformation of the object and
damage to the fingers. Other conditions include slip prevention,
but in this research the focus was devoted to the former two consid-
erations, and algorithms were developed to satisfy these two condi-
tions. To the best of the authors’ knowledge, most of the work on
stable grasping was implemented for robotic grippers and not for
exoskeleton gloves.
The exoskeleton glove needs to use all five fingers for grasping

objects as it will reduce the amount of force applied by individual
fingers except for the thumb and also reduces the chances of the
object from slipping and falling [13]. Some research on grasp stabi-
lity includes grasp stability learning using tactile information, which
essentially incorporates sensors all along the robotic hand fingers of
a Barret hand. The Barret hand consists of a model that predicts the
stability of the grasp based on the tactile information [14]. Naka-
shima et al have defined conditions for stable grasps and designed
a controller for a single finger that satisfies the stability conditions
[10]. Work on stable precision grasps was carried out on a two-
finger pinch gripper by Kragten et al. [15], where they made
mechanical design changes to a gripper linkage so that the grasping
stability increases. Multi-fingered gripper stability analysis was
carried out by Ref. [16] where they performed stability analysis
of a four-fingered gripper grasping a cube oriented such that the
forces on the fingers are symmetric. A parallel hybrid hand was
designed by Lu et al. [11] where the forces on each finger were
determined by optimization so that the forces are as far as possible
from the boundary of friction cone, where friction cone is a cone
formed by the maximum theoretical friction force vectors about
the point of application of the force. But this analysis was performed
without considering the mass of the object grasped and only the
external forces were taken into account. Maximilian worked on
the effect of passive reactions on grippers with stiff and non-back
drivable actuators on the stability of a grasp [17]. Bekiroglu et al.
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have developed a method to assess grasp stability based on readings
from visual and tactile sensors and implemented a learning frame-
work which was trained using synthetic datasets [12]. Intelligent
grasping methods such as slip detection was explored by
Ref. [18] where the stability of the grasp was improved by detection
of slip and iterative increment of normal contact forces. Chauhan
and Ben-Tzvid [19] and Chauhan et al. [20] developed prediction
algorithms that can detect minute movements in the fingers and
predict the type of grasp intended by the user, which was executed
by the exoskeleton glove to completion.
In the field of grasping of deformable objects, Howard and Bekey

[21] have trained a neural network algorithm to extract minimum
gripping force required for a deformable object whose deformation
characteristics are physically modeled. Another neural network
based approach was used by Ref. [22] where a vision system was
used to monitor the deformation of soft objects, which were corre-
lated to the magnitude of the applied forces. This information was
used in a controller to improve the grasp stability of soft objects.
A tactile sensor was developed by Ref. [23], whose haptic feedback
can be used to differentiate between soft and rigid objects. This
sensor can be used on a gripper at the finger tips and the sensor
data can be used to apply force based on the soft or rigid object
detected. Another method by Ref. [24] uses a vision sensor and
other sensor data such as finger position, velocity, and the forces
applied, to build a 3D model of the object and its deformation.
Delgado et al have developed a control strategy described in
Ref. [25], which uses tactile information to adjust its force limits
based on the deformability degree calculated for the object. Grasp-
ing of soft objects with flexible tools was studied by Ref. [26],
where visual information from stereo cameras was used to control
the position of the tool tip while making contact with the soft
object and neural networks was used to improve the accuracy of
the position of the tool. These methods were implemented on
robotic grippers and required vision, which not only introduces its
own set of limitations such as the need for uniform lighting and
no background objects but also increases the on-board computation
power required. Since in the case of exoskeleton gloves, the trajec-
tory information is not known prior to the manipulation of the object
as it is dependent on the user, there is a need to develop a control
method that can detect the change in kinematic the state of the
object instantaneously and apply forces accordingly to meet the sta-
bility conditions.
The following sections will introduce the mechanical design and

the hardware used for testing the prototype through experiments.
Section 2 introduces the deformation detection algorithm and pro-
vides an explanation of how the algorithm works. Simulation

results are shown for the algorithm for various materials with differ-
ent stiffness. Section 3 discusses the optimal force algorithm where
the method of generating an optimal force distribution such that it
satisfies the moment and force equilibriums and simulation results
are also presented. Sections 4 and 5 describe the developed
control architecture and prototype integration, respectively.
Section 6 details the experimental results of both the deformation
detection algorithm and the optimal force algorithm and the
results are analyzed. The paper is concluded with analysis of the
results, the novel contributions of this paper and future work that
would advance this research further.

2 Deformation Detection Algorithm
As mentioned in Sec. 1, preventing the application of large force

to avoid deformation of objects is one of the conditions of a stable
grasp. This algorithm was developed to prevent crushing or deform-
ing soft objects by the glove. Initially, when the glove is in non-
contact state with the object, the user provides intent to grasp the
object either by voice command or some input device such as a
mechanical switch. Upon receiving the intent to grasp, the linkages
of the glove are driven at certain velocity thus closing toward the
object. Since the glove does not know the shape of the object
also due to nonlinear relation between the speed of the linear
SEA and fingertip velocity, all four fingers may not touch the
object at the same time. If the finger that touches the object
earlier than other fingers starts applying force then it may cause
the object to tilt or fall over. To prevent this, the fingers stop imme-
diately upon detecting the presence of an object and wait until all
fingers have made slight contact with the object. After ensuring
that all the fingers have made contact, the deformation detection
algorithm is initialized. This algorithm takes in as input a predefined
force that is applied and sent as the reference signal to the actuators.
Before the algorithm is further explained, it is important to describe
the sensors that are available on the glove necessary for this process.
For each finger, there are two sensors, one is a linear potentiometer
and the second is a magnetic hall-effect encoder. The linear poten-
tiometer measures the distance traveled by the end of the spring in
the SEA connected to the linkage.
In the algorithm, ω is the motor velocity, Fd is the initial prede-

fined force provided to the algorithm, Fref is the reduced force after
detection of deformation, and ΔDPOT is the deformation as mea-
sured by the linear potentiometer.
The magnetic hall-effect encoder measures the motor position

which could be used to measure the linear displacement of the

Fig. 1 Exoskeleton glove worn by a hand to grasp a cylindrical object. The exoskeleton glove has a 1-DoF linkage mech-
anism for each finger and each linkage mechanism is driven by a linear SEA. A spring element is attached in series to the
linear actuator thus allowing for measurement of forces being applied to grasped objects.
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end of the spring connected to the motor. As the glove applies force
on the object, based on the deformation that is calculated based on the
difference in sensor readings in the SEA, the force value is reduced
online to minimize the deformation of the object. Figure 2 describes
the algorithm used for deformation detection. The algorithm initially
is in State 1where the glove is waiting for a user input to initiate grasp
which is either through twitch movement or a switch. Once the input
is detected, the glove starts flexion motion and the fingers are driven
closer to the object. The contact of fingers with the object is detected
and the system transitions to State 2. In State 2, the linear potentiom-
eter measurement is being tracked and based on the change in its
measurement from the moment the contact is made the initial prede-
fined force is reduce in proportion to the change. The force reduces
until there is no change in measurement of the linear potentiometer.
The glove continues to apply the new reduced force until the user pro-
vides an input to release the grasp. Here it is assumed that the finger
stiffness is very high thus its effect on the algorithm is negligible. The
finger stiffness can further reduce the required force so tests can be
performed to estimate it. This estimate can be used to recalibrate
the algorithm so as to take into account the effects of the fingers
stiffness.
Before testing the algorithm on a physical prototype, a simulation

was performed to test it. For the simulation, the object to be grasped
was modeled as a linear spring based on results from the finite
element analysis (FEA) simulation performed on a shell type cylin-
drical object as shown in Fig. 3 with transverse forces applied on the
object.
The maximum displacement from the FEA simulation was found

to be linearly dependent on the force being applied. The simulation
was performed in SIMULINK and was tested on four different
object stiffness values. Simple force control algorithm results are
used for comparison with that of using the deformation detection
algorithm.
In the simple force control, the force is applied in a manner such

that it is equal to the predefined force irrespective of the deformation
observed. And in the case of the deformation detection algorithm,
the reference force is reduced in proportion to the deformation
detected. Figure 4 clearly shows a difference between the

deformations when a simple force algorithm is used compared
with when a deformation detection algorithm is used. As can be
noticed from the results, the deformation reduction is higher for
softer objects as compared with stiffer objects. This implies that
for rigid objects the algorithm will apply force that is more close
to the initial predefined force.

3 Optimal Force Algorithm
As previously described, one of the conditions for a stable grasp

is that the glove should apply forces such that the force and moment
equilibriums are satisfied.
For the sake of simplicity, only cylindrical grasps were considered

since they are the most common in daily life activities. Three points
of contact are necessary and sufficient to grasp a 3D object, but while
performing cylindrical grasp with the glove, five fingers come in
contact with the object. Since there are more contact points than nec-
essary, there will be infinite combinations of force distributions that
can satisfy the force and moment equilibriums.
Therefore, an optimization method was used to find the optimal

set of force distribution that meets the stability conditions. While
grasping the user may move the object in a translational or rota-
tional motion or a combination of both. During this user imparted
motion, the forces required to meet the equilibrium conditions
also change in a dynamic manner. Therefore, an inertial measure-
ment unit (IMU) is used to measure the real-time kinematic state
of the glove which is fed into the optimization algorithm to calculate
the optimal set of forces.

3.1 Dynamics Modeling of the Grasp. The dynamics of
grasping an object needs to be analyzed which will be used in the
optimization as constraint equations. The forces are labeled in
Fig. 5where a human handwearing the exoskeleton glove is grasping
a cylindrical object. Here, various coordinate frames are defined
which include the world coordinate system, object coordinate
system, and glove coordinate system. The contact forces are
related by Eq. (1) where it satisfies the force andmoment equilibrium

Fig. 2 Flowchart describing the deformation detection algorithm. There are two states for the
system, initially in State 1 the glove is in grasping stage and in State 2, deformation is measured
by the system and accordingly adjusts the force being applied.
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Fig. 3 FEA analysis of thin film cylindrical object. This analysis shows a thin film cylinder and normal forces are applied in FEA
software. Upon iteratively increasing the force applied, deformation is found to increase in a linear manner.

Fig. 4 Comparison plots between using deformation detection algorithm and force control. For this simulation, a
linear mass-spring model was used as a model for the object to be grasped. Simulation results are shown for four
stiffness values and from observation the algorithm affects the force in larger magnitude for softer objects.
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where kFN is the normal force applied by the kth finger on the object,
kFfric is the friction force due to the kth finger on the object, Rk_cm is
the rotation matrix from the point of contact of the kth finger to the
center of mass of the object, pk_cm is the translation matrix from the
point of contact of the kth finger to the center of mass of the object,
Rk_cm is the rotation matrix from the IMU to the center of mass of
the object, pk_cm is the translation matrix from the IMU to the
center of mass of the object. ax, ay, and az are the linear acceleration
along the three axes, ωx, ωy, and ωz are angular velocities of the
object along the three axes and these parameters are calculated by
the IMU placed on the glove. The above equations satisfy the equi-
librium equations as required for meeting one of the stability condi-
tions. Slip is prevented by applying the friction constraint on the
forces as given in Eq. (2)

∑5
k=1

μkFN sin(θz) ≥ mg + mẍz (2)

where μ is the friction coefficient of the object and θz is the orien-
tation of the object with respect to the z-axis. The forces on the
fingers kFN are determined by performing optimization such that
they meet the above given stability condition equations.

3.2 Optimization. For any optimization problem, an objective
function which will be minimized under given constraints needs to
be formulated. For this case, two objective functions are proposed
as shown in Eq. (3)

f (.) = 1F2
N + 2F2

N + 3F2
N + 4F2

N (3)

This is a constrained optimization problem and in this case there is
one equality constrained Eq. (1) and one inequality constrained
Eq. (2). While performing optimization, there is a possibility for
the optimal solution to be out of bounds which cannot be imple-
mented in real life. Therefore, the bounds on each design variable
are given in Eq. (4). The lower bound is chosen such that there are
no negative values generated which cannot be implemented as the
linkage can only apply force in the push direction but not in the
pull direction. The upper bound is determined by themaximum actu-
ator force limits

0 < {1FN , 2FN , 3FN , 4FN} ≤ FmotorLim (4)

Equation (9) is the optimization problem with the equality and
inequality constraints, which are rearranged forms of Eqs. (1), (2),
and (4)

min fo= 1F2
N +

2F2
N +

3F2
N + 4F2

N

Subject to A[x]=b

[x]= 1FN
2FN

3FN
4FN

[ ]T
fi ≤ 0, i=1, 2, 3

where,

A= S1 S2 S3 S4
[ ]

b = −(StransMẍ+SgMg+SrotIθ̈)
f1 = −1FN −2FN −3FN −4FN

[ ]
f2 = 1FN −FmotorLim

2FN −FmotorLim
3FN −FmotorLim

4FN −FmotorLim

[ ]

f3 = mg+mẍz−
∑5
k=1

μkFN sin(θz) (5)

To solve this optimization problem on a microcontroller, we use a
barrier method which is an interior point method, the details of
which are provided in Ref. [27] used for solving optimization prob-
lems with inequality constraints. In the barrier method, inequality
constraints are transformed to equality constrained optimization
problem as shown in Eq. (6)

min f1= t( f0)+ϕ(x)

Subject to A[x]=b

where,

ϕ(x)=−
∑m
i=1

log(−fi(x))

(6)

where f1 is the new objective function which includes the inequality
constraint and t is a parameter which affects the accuracy. The
optimal values are obtained in an iterative manner where the
values are updated until they converge to the optimal value.
The equation for updating the x value is described in Eq. (7)

Δx
w

[ ]
= ∇2f AT

A 0

[ ]−1 −∇f
b − Ax

[ ]
(7)

This method requires a starting point which is feasible such that it
satisfies the constraint equations. Therefore, infeasible start Newton
method [27] is used simultaneously to find the feasible solution.
This method allows any arbitrary point or set of force values as
the starting point. The algorithm that calculates the optimal force
values using the infeasible start Newton method and the barrier
method is detailed in Table 1.

Fig. 5 Forces on the object due to the glove. Here a human hand
wearing the exoskeleton glove is holding a cylindrical object and
the forces experienced by the object are labeled along with the
coordinate frames.
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The above algorithm was implemented in MATLAB and all the
force values converged approximately in around 30 iterations as
shown in Fig. 6 and the algorithm when implemented on teensy
3.6 microcontroller, it took 12 ms to compute 30 iterations.

4 Controls Architecture
The force reference values for each actuator are generated by the

optimization algorithm as described in Sec. 3.2. These reference
force values are sent to a controller that drives the SEA toward
the reference force value. The overall control architecture is
shown Fig. 7 where there are five actuators each with their own con-
troller. To design the controller for the SEA, a transfer function of
the SEA needs to be derived. Viscous friction was assumed to be
present in the actuator. In the transfer function for free motion of
the linkage mechanism as given in Eq. (8), the unknown parameters

are the viscous friction coefficient b and the Inertia J as observed by
the motor

θm
V

=
kt

s2JR + s(bR + kvkt)
(8)

where θm is the motor position (rad), R is the motor resistance, kt is
the torque constant of the motor, kv is the motor velocity constant, J
is the effective inertia, and b is the effective viscous coefficient.
Estimation of these two parameters is achieved by using system

identification technique. System identification requires input and
output data either in the time-domain or the frequency domain
based on which the transfer function of the plant is estimated
such that it best matches with the output for the given input.
These data are acquired by sending a constant input voltage to the

motor and measuring the linear position with respect to time. These
data are fed into the system identification application in MATLAB to
estimate the transfer function. In Fig. 8, we can observe that the
output of the transfer function is approximately matching with the
measured output data for all four actuators.
Motor controller is designed based on the estimated transfer

functions. The output results of a tuned PID (proportional-integral-
derivative) and PI (proportional-integral) controller in SIMULINK

were similar so a PI controller was selected for the sake of implemen-
tation simplicity. The rise time approximately for all four linkages is
around 0.6 s. The PI controller gains are tuned in SIMULINK using PID
tuner and the model was built using the transfer function that includes
the dynamics of the spring in the linear SEA as given in Eq. (9)

θm
V

=
kl

s2JR/kt + s(bR + kvkt)/kt + Rksk2l /kt

kl =
P

2πN

(9)

Table 1 Optimal force algorithm

Input : choose arbitrary x such that, x ɛ dom ( f0) and fi(x)< 0 is satisfied
Input object properties such as mass, inertia etc.
Define parameters like motor limits, distance between linkages
Read IMU data and fetch current acceleration and orientation of the
object

Setup : Formulate new objective function f1 as given in Eq. (6)
Define the equality constraint equation matrices A and b

for i= 1 : 30
1. Find Δx using Eq. (7)
2. Update x= x+Δx
3. Repeat step 1 with updated x value; Update i ++

end
Output : Optimal force values—x

Fig. 6 Force convergence results of the optimization. Optimization used to generate the optimal set of forces for the four fingers
is implemented initially on MATLAB and as can be observed the values converge to their optimal value in less than 30 iterations.
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where P is the pitch of the leadscrew, N is the gear ratio of the gear-
head of the motor, and ks is the stiffness constant of the spring in the
SEA.
The transfer function is used to build the feedback physical

model in SIMULINK and is used to tune the PI gain parameters.
The results of the tuned controller are briefly described in Table 2.
The force measured by the SEA is nonlinearly related to the force

that is being applied at the tip of the finger where the object is being
grasped. Therefore, a Jacobian transformation was applied to relate
the force exerted by the SEA and the force applied at the fingertip.
Equation (10) describes the relation between the input and output of
the controller and the relation between the force measured by SEA
and fingertip force

ei = iFd − iFm i = 1, 2, 3, 4

iFd = Ji
iFN

iFm = kspr(
id pot − ciθm)

ui = ikpei + ikint

∫
eidt

(10)

where iFm is the measured force by the SEA, iFd is the desired ref-
erence force by the SEA, kspr is the SEA spring constant, idpot is the
linear potentiometer measurement, and iθm is the motor position
measured by the magnetic hall-effect encoder.
The Jacobian (J) for each finger is derived using the dynamics

model developed in Ref. [2]. As can be seen, the dynamics model
is highly nonlinear and its direct implementation on a microcontrol-
ler will pose computational issues. An approximate second-order
polynomial model was fitted to the analytical dynamics model as
shown in Fig. 9 and will be used in the Jacobian.

5 Prototype Integration
The RML glove was designed in SolidWorks and manufactured

and integrated as shown in Fig. 10 to test both algorithms described

earlier. The glove base structure and most of the SEA parts includ-
ing the screw-nut were manufactured using a 3D printer. The link-
ages were manufactured from a 0.8 mm thick aluminum sheet using
a 2.5D milling machine so that it is sufficiently strong and light-
weight. Direct current brushed motors were used with 250:1
gearbox that run on 12 V power supply with stall torque of
0.3 N m. For measuring the motor position, magnetic hall-effect
encoders were used which provide 12 counts per revolution of
motor shaft. The output of the SEA was measured using a linear
potentiometer with 20 mm travel length. The actuators were con-
trolled using teensy 3.6 microcontroller which also runs the defor-
mation detection algorithm and optimal force algorithm. The
microcontroller sends the motor pulse width modulation signals
to the motor driver (by TI DRV8801), which can deliver a contin-
uous current of 1 A and can operate between 8 V and 36 V.
MPU-9250 by InvenSense IMU was used for measuring the ori-

entation and acceleration of the glove. It is a nine-axis motion track-
ing device that combines a three-axis magnetometer, three-axis
accelerometer, and three-axis gyrometer. Magnetometer provides
orientation of the device with respect to the magnetic north, the
accelerometer provides the gravity and linear acceleration measure-
ments along the three axes, and the gyrometer provides angular
velocity about the three axes. Figure 11 describes the prototype
along with all individual components used in building it.
Exponential smoothing method was used to remove noise from

all the sensors including the IMU, linear potentiometer, and mag-
netic hall-effect encoders.

6 Experimental Setup and Results
6.1 Deformation Detection. In this test, a deformation detec-

tion algorithm was implemented and tested on the glove. Three dif-
ferent objects were selected with different stiffnesses for the test
including a plastic water bottle, a polycoated paper cup, and a
plastic cup.
Initial tests were carried out on these objects to quantitatively

measure the stiffness of the objects. The test setup as shown in

Fig. 7 Overall control architecture of the glove. This describes the data flow for this
algorithm where data from the IMU are read by the algorithm and generates optimal
set of forces. This optimal force values are sent to each actuator as a reference force
which is tracked by the controller.
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Fig. 8 Results of system identification of the four actuators. (a) Input voltage 8.2 V, (b) input
voltage 5.6 V, and (c) input voltage 3 V. Second-order transfer function was estimated based
upon the step response of the actuator. Estimation was performed in MATLAB. The inertia and
viscous parameters are calculated by comparing the physical transfer function with the estimated
transfer function.
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Fig. 12 includes a linear actuator with a force sensitive resistor
(FSR) at its tip. The linear servo actuator was placed against the
surface of the object such that it was slightly touching.
Then the linear actuator was commanded to move forward such

that it pushes against the object while deforming it. The FSR was
used to calculate the force applied by the linear actuator on the
object and the potentiometer was used to calculate the distance trav-
eled by the linear actuator which is also the deformation of the
object. This test was carried out for all three objects and the
results of the tests are depicted in Fig. 13. The measured data is
fitted to a linear curve and is plotted along with it for comparison.
By observation, it is clear that the plastic water bottle is stiffer
than the poly coated paper cup which is also stiffer than the
plastic cup. Since the stiffness properties of the objects were
obtained, the subsequent tests with the glove were performed.
The deformation detection algorithm was implemented and the
deformation is measured. Initially the glove was positioned near
the object to be grasped and all the linkages were fully extended
so they are not touching the object. Then, constant velocity input
was applied in a feedforward manner, such that the fingers start
flexing and closing on the object. As soon as the finger makes
contact with the object, the contact is detected based on the accel-
eration spike observed in the linear potentiometer measurements
as shown in Fig. 14. The particular linkage upon making contact
with the object halts the flexion and waits until all the fingers
achieve contact. After all the fingers make contact, the deformation
detection algorithm is engaged and the glove starts grasping the
object with predefined forces. It is assumed that the user does not
move the fingers until the deformation detection algorithm is
engaged. But this requirement can be eliminated by using a refer-
ence force after the fingers make contact to readjust them in the
event that the user may mistakenly move the fingers. While per-
forming this grasp, the linear potentiometer and magnetic hall-effect
encoder readings are measured and stored for analysis. This test was
repeated for all three objects and all the measurements were stored.
This test was repeated for all three objects with only the force

control implemented results that were used for comparison with
the former test results.
As can be seen in Fig. 15, the plots are arranged in increasing

stiffness of the object and the gap between the deformation for
force control and deformation detection algorithm is decreasing
with increasing stiffness as observed in the simulation results.
This proves that the algorithm decreases the force applied propor-
tional to the softness of the object.

6.2 Optimal Force Algorithm. Tests where the forces from
the optimization are compared with forces produced by a human
hand were performed. The test setup includes an object (water
bottle) and four FSR sensors are attached on the bottle surface at
known relative distances as shown in Fig. 16. An IMU is attached
on the object at known distance from the region of grasp. Then the
bottle is held by a healthy hand such that the four fingers are on top
of the four FSR sensors. Three sets of experiments were performed:
(1) hold the bottle in the air without any movement, (2) hold the
bottle up and then translate in the direction of the force applied
by the fingers back and forth three to four times, and (3) hold the
bottle up and rotate the bottle in both clockwise and counter-
clockwise direction.
While performing these tests, inertial data from the IMU and force

data from the FSR are stored for post-processing. Hardware-in-loop

Table 2 Tuned controller results

Index Middle Ring Pinky

Bandwidth (Hz) 1.42 1.52 1.47 1.22
Rise time (s) 0.17 0.16 0.15 0.2
Settling time (s) 0.27 0.27 0.23 0.37
Overshoot (%) 0.74 0.23 1.74 0.02

Fig. 9 Variation of tip force with joint angle. Here for a fixed input force of 15 N, the tip
force is calculated analytically as the joint angle is increased. A second-order polynomial
function is fitted to that analytic curve so that the polynomial function can be implemented
in a microcontroller.

Fig. 10 RML glove prototype built to test the stable grasp algo-
rithms including the deformation detection algorithm and
optimal force algorithm

Journal of Mechanisms and Robotics DECEMBER 2020, Vol. 12 / 061015-9



(HIL) simulation was performed where the data from the IMU was
passed through the optimal force algorithm to generate the force distri-
bution across the four fingers. Upon comparing the experimental data
and the HIL simulation data as shown in Figs. 17–19; it can be
observed that for all three cases the middle and ring finger forces
match with greater accuracy. However, the pinky finger force had
less matching pattern in terms of force magnitude. This test was
done to check the ability of the algorithm in producing human like
forces. It can be concluded that two out of four fingers exhibited
acceptable matching in force magnitudes. The index finger matches
partially with the experimental data and pinky finger demonstrates
the lowest matching. This lower matching could be due to distribution
of forces generated by the brain did not exactly follow the optimization
method used, and even if it did, the objective function could be more
complicated than the one used in the algorithm.
The algorithm was then implemented on the RML glove for

testing. For the test, a water bottle was used as shown in Fig. 20
for grasping by the exoskeleton glove. Two tests were performed:
(1) predefined grasp force was applied and the object was held sta-
tionary and (2) initially the object was lifted after applying a prede-
fined grasp after which it was slowly rotated 90 deg clockwise and
then back to the original position. The forces for each finger were
determined by the optimization algorithm and the inertial data
from the IMU.

From Fig. 21, it can be observed that all the fingers of the glove
reach the desired force with a small steady-state error. The rise time
is approximately 1.5 s which is due to motor and power limitations.
In the object rotation part of the test as shown in Fig. 22, the

desired force is changing as it is rotated and the SEAs have

Fig. 12 Object material testing setup. This test setup was built
to measure experimentally the stiffness of the three test
objects using a linear actuator and FSR. These objects will be
later used to perform the deformation detection test.

Fig. 13 Measured stiffness plot. Results of the material testing for the three objects are
shown. A linear curve is fitted to the experimental plot and there is clear distinction
between the stiffnesses of the three objects.

Fig. 11 Overall hardware architecture. The exoskeleton glove is communicating with a
computer and the user for operation of the glove and analysis of data.
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approximately followed the profile. There was small delay
between changes occurring in the desired force and the measured
force which is due to motor velocity and power limitations as men-
tioned earlier.

7 Conclusion and Future Work
In this research, novel algorithms were developed which improve

the grasp stability of an exoskeleton glove by using minimal
number of sensors and low computational power. The algorithms
helped improve the stability of grasp in two major ways: (1) detect-
ing any deformation in the object while grasping and minimizing it,
and (2) adjusting the force distribution among the fingers such that
the force and moment equilibriums are maintained. Deformation is
detected based upon tracking of the potentiometer and encoder
readings and then decreasing the set point force value to prevent
further deformation. The force optimal algorithm developed used
information from the sensors and the IMU to calculate an optimal
distribution of forces that satisfy the force and moment equilibri-
ums. The Barrier method along with the infeasible start newton
method was used for optimization and was implemented in a
teensy microcontroller. It took 12 ms to run the optimization algo-
rithm and was fast enough to have negligible errors. A full

Fig. 14 Contact detection. The glove has initiatedmotion and upon contact with an
object, there is a spike observed in the acceleration as measured by the linear
potentiometer.

Fig. 15 Measured deformation algorithm response. The deformation detection algorithm is
tested on the three objects and the linear potentiometer response is plotted against time.
Response of the potentiometer when the algorithm is not implemented is also plotted for
comparison.

Fig. 16 Hand optimal test setup. This test setup was used to
measure and compare the forces produced by human hand
with forces generated by the optimization method.

Journal of Mechanisms and Robotics DECEMBER 2020, Vol. 12 / 061015-11



prototype was manufactured and integrated and was used to test and
validate the proposed algorithms. The deformation detection algo-
rithms implemented on the prototype produced similar results com-
pared with the simulation. The glove was able to differentiate
between objects with different stiffnesses and was able to reduce
the deformation compared with when the algorithm was not imple-
mented. The deformation reduction was higher for soft objects com-
pared with rigid objects. Then the optimal grasp algorithm was
implemented which, for known mass properties of the object, calcu-
lates the optimal forces for the four fingers. The thumb finger acted
as a rigid support and provided a reaction force. Initial tests compar-
ing the simulation results with a human hand showed a good match
for two fingers and close similarity for the other two fingers. The
glove performance was then tested for this algorithm.
Future research includes combining both algorithms so that they

run simultaneously. Integration of rotary SEA or some other form of

sensor for autonomous estimation of the mass of the object and
other properties will be performed. Improvements in mechanical
design of the glove will be performed such that it is lighter and
more compact. Machine learning techniques can be applied to
improve the performance of these algorithms. Further research
can be performed by analyzing the computational cost, complexity,
accuracy of the nonlinear constrained optimization method, results
of which can be used to further improve the optimization method.
In-depth study of friction characteristics needs to be performed to
eliminate the delay issue and also experiment with different
sliding materials in the linear actuator so as to have uniform friction
characteristics that is not affected by the load, velocity, or position
of the SEA. In addition, online stiffness measurement of the objects
being grasped will be implemented using the sensor measurements
after performing calibration tests so that the stiffness measured
accurately represents the actual stiffness of the object.

Fig. 17 Hand optimal test for holding. The forces generated by the human hand when grasping a
bottle are compared with the forces as produced by the optimal force algorithm where the input is
the total force produced by human hand. In this case the object is not being manipulated.

Fig. 18 Hand optimal test for translation. In this case the object was held and then translated in
the horizontal direction in an oscillatory manner.
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Fig. 19 Hand optimal test for rotation. In this case the object was held by hand then rotated
in an oscillatory manner.

Fig. 20 Prototype glove shown here was used for testing the optimal force algorithm.
The object in this case the water bottle is grasped and then the forces are applied as
generated by the algorithm.

Fig. 21 Experimental results for holding are shown here where the object grasped is held
stationary and no motion is imparted to the object. The desired force as generated by the
optimization method is compared with actual force measured.
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