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A B S T R A C T

This paper proposes a novel human machine interface (HMI) and electronics system design to control a
rehabilitation robotic exoskeleton glove. Such system can be activated with the user’s voice, take voice
commands as input, recognize the command and perform biometric authentication in real-time with limited
computing power, and execute the command on the exoskeleton. The electronics design is a stand-alone plug-
and-play modulated design independent of the exoskeleton design. This personalized voice activated grasping
system achieves better wearability, lower latency, and improved security than any existing exoskeleton glove
control system.
. Introduction

According to statistical data published in 2010, over 6.7 million of
.S. adults have difficulty grasping or handling small objects [1]. To
otentially better the lives of such a large group of people, a robotic
xoskeleton glove was designed to be used as a rehabilitation device for
ctivities of Daily Living (ADL) [2]. Many soft and rigid exoskeletons
ere proposed and designed by previous researchers.

The SEM glove designed by Nilsson et al. [3] has been used com-
ercially. It consists of a soft glove powered by a motor with cable

ransmission. The SEM Glove is equipped with 3 FSR sensors placed
t the middle and index finger pad and at the thumb. This glove can
utput a maximum of 5 N on one fingertip. However, a normal healthy
0 to 29 year-old male can output a maximum of 450 N on all fingers,
hich is about 90 N on each fingertip [4].

Ma et al. designed the SAFER rigid exoskeleton using cable transmis-
ion and strain gauges to perform force feedback [5]. This exoskeleton
an output 10 N on each fingertip. The glove can be used for reha-
ilitation therapy [6,7]. Lee et al. built the iSAFER glove by adding
slip detection and motion amplification system on the SAFER glove

esign [8], which can be used as a rehabilitation device [9].
Refour et al. integrated an exoskeleton glove with series elastic

ctuators (SEA) [1,10]. Compared with the soft SEA glove, this glove
an output 20 N on each fingertip. Chauhan et al. proposed a grasp
rediction algorithm to enhance the previous motion amplification
ystem [11,12]. Vanteddu el al, improved the structure of the glove [2]
nd added deformation control for more stable grasping [13].
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P. Ben-Tzvi).

Xu et al. designed an exoskeleton glove using a rigid and articulated
linkage mechanism connected with a linear SEA on each finger, to
control each of the linkage mechanisms [14]. A rotatory SEA is used
to control the MCP joint of the thumb [15], and a linear SEA to control
the wrist joint. This design is more compact than Refour et al.’s design
and can output the same amount of force.

Exoskeleton gloves have been built and improved by many re-
searchers; however, many challenges remain with respect to the control
system design of an exoskeleton glove.

Li et al. proposed an EEG based method to control exoskeleton
gloves with a 95.57% actuation success rate [16]. However, this system
required a 8.06 s processing time before the actuation started.

Randazzo et al. proposed another EEG approach [17,18]. This
method has less than 500 ms processing time. However, the earlier-
mentioned system has a classification accuracy of around 70%.

Chowdhury et al. improved the grasp prediction accuracy to 75%
by combining EEG with EMG signals [19].

Baklouti et al. proposed a vision-based system using head and
mouth gestures [20]. This approach has trouble distinguishing between
normal head and mouth movement and command gestures.

Kim et al. designed a vision-based system where users wear a
camera for detecting the objects to be grasped [21]. This approach is
only accurate when the user has a clear view of the target object with
no overlap and no other objects in the view.

Researchers also proposed a number of voice-controlled exoskele-
tons [22–24]. These voice-based solutions lack biometric authentica-
tion and configurable activation keywords.
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Fig. 1. Novel design of the new RML glove with seas and electronics.
This paper proposes a complete system to control exoskeleton gloves
with portable hardware, slip detection algorithms, and voice-based HMI
with bio-authentication feature. This grasping system includes a stand-
alone plug-and-play modulated design electronics to control the ex-
oskeleton, and a voice-control-based HMI called the integrated trigger-
word configurable voice activation and speaker verification (CVASV)
HMI. The electronics support slip detection algorithms, cloud comput-
ing, and provide over two hours of continuous usage. The CVASV HMI
can perform customized voice activation and text-independent speaker
verification on embedded systems with limited computing power. The
following sections focused on the design of the electronics and CVASV
HMI to achieve a stable grasp on an exoskeleton glove triggered by
voice commands with bio-authentication.

2. Hardware introduction

In this paper, the personalized voice-activated grasping system is
attached to Xu et al.’s glove design. However, this system’s design
principle is based on its ability to be easily deployed on any soft or
rigid exoskeleton with force feedback sensors.

A Linear SEA and a rotatory SEA are shown in Fig. 1. Linear SEAs
and articulated linkage mechanisms are used for all fingers on the
RML glove. A linear SEA is used to perform indirect sensing of contact
forces between the fingers and the grasped object. In Fig. 2, the red
enclosed box points to an angular potentiometer which can measure the
angle of the linkage attached to and actuated by the SEA. The distance
denoted by AC can be calculated based on the angle measurement. The
blue enclosed box points to a magnetic encoder that can measure the
distance between points C and E. There exists a spring between points
A and D, and CD and CB are of known value. The difference between
AE and DE calculates the compressed spring length. The spring length
calculation is shown in Eq. (1). Force can be calculated using Eq. (2).

𝐿𝑠𝑝𝑟𝑖𝑛𝑔 = cos(∠𝐴𝐵𝐶) × 𝐶𝐵 + 𝐶𝐸 −𝐷𝐶 −𝐷𝐸 (1)

𝑓𝑜𝑟𝑐𝑒 = 𝑘𝑠𝑝𝑟𝑖𝑛𝑔 × 𝛿𝐿𝑠𝑝𝑟𝑖𝑛𝑔 (2)

The rotatory SEA is designed to duplicate the motion of the metacar-
pophalangeal (MCP) joint. The Rotatory SEA uses a similar structure
and uses a torsion spring instead of a coil spring for the linear SEA.
Fig. 3 shows the design of a rotatory SEA. The red enclosed box
highlights the output shaft, and the blue enclosed box highlights the
2

Fig. 2. Linear SEA installed on RML glove finger linkage mechanism. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

input shaft. There exists a torsion spring between the output shaft and
the input shaft. The force can be easily calculated by measuring the
difference between the input shaft and output shaft angles.

3. Related work

3.1. Intelligent object grasping and learning system

Brielle [25] proposed an intelligent object grasping and learning
system. The electronics design contains a WiFi model and Teensy
3.2 micro-controller with a stationary power supply. The size of the
electronics is 5.3 cm × 8 cm × 4 cm, which is relatively large for
exoskeleton gloves and does not have good wearability. The mobility of
the patient’s arm will be dramatically affected if a 5.3 cm × 8 cm × 4 cm
controller box is placed on the patient’s hand or arm. If the controller
box is placed on the waist, it requires extra wiring from the waist to
the exoskeleton, which will also affect the comfort of wearing. The low-
level control programs run in a state machine using a single thread
which bottlenecks sensor readings. Therefore, the system experiences
noticeable delays while controlling all fingers simultaneously.
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Fig. 3. Design of the rotatory SEA on the RML glove thumb linkage. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Force sensors are placed on the fingertips to measure and regulate
contact forces. The force sensors are also used to monitor any force
changes on the fingertips. When a grasped object starts to slip, the force
measured on the fingertips would inherently decrease dramatically.
Therefore, if there is a dramatic decrease in the force-sensor reading,
it indicates that the object grasped by the user is slipping. The HMI
system uses the user’s hand movement to initiate a grasp—the system
is activated by sensing a minor twitch of the finger. Whenever the force
sensing on the finger changes, a grasp will be initiated.

This system requires the user to initiate a grasp with finger move-
ment. However, not all patients suffering from hand disability have the
ability to control their fingers. This method is only suitable for patients
with some finger movement capabilities and cannot be used for patients
who cannot move or control their fingers.

3.2. VGG-M speaker verification

VGG-M is a deep learning approach to the voice verification system
proposed by Nagrani et al. [26]. The VGG-M speaker verification
method is used as the performance baseline method in this research.
This deep-learning voice verification system achieves a better Equal
Error Rate (EER) (10.2%) than the non-deep learning baseline (15.0%).

During training, each audio file is divided into several 3-second
audio clips. Each audio clip is turned into a 512 × 300 spectrum using
Fourier transform. The spectrum is treated as 2D images and fed into
an utterance-level feature extractor. With the utterance-level features,
1251 speakers from VoxCeleb1 are classified as 1251 classes by the
VGG-M deep neural network.

During testing, the VGG-M network is used as a feature extractor.
VGG-M changes the average pooling layer to match the test-time length
so that the network can take inputs of various lengths. If the cosine of
the distance between two different audio samples is within a threshold,
the two samples are considered to be of the same class. The paper also
proposes a test-time augmentation method which randomly selects ten
samples from the entire data set and calculates the average distance be-
tween features. The VGG-M network with softmax loss, global average
pooling, and test time augmentation 2 was used as the deep learning
baseline in this research.
3

3.3. MobileNet

When using personalized voice activation and command system on
exoskeletons, computation speed is crucial. The networks proposed by
Nagrani et al. [26] are not the fastest networks to run on a mobile
device. As such, Andrew et al. [27] proposed an efficient convolu-
tion neural network used on image classification. MobileNet uses a
deep-wise separable convolution to replace the traditional convolution.
𝐶𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙: Computation cost of traditional convolution. The cost of a
traditional convolution is shown in Eq. (3). The deep-wise separable
convolution is shown in Eq. (4). Compared to traditional convolution,
the MobileNet’s deep-wise separable convolution is faster based on
Eq. (5).

𝐶𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐻𝑖 ×𝑊𝑖 × 𝐶𝑖 ×𝐻𝑘 ×𝑊𝑘 × 𝐶𝑜 (3)

𝐶𝑚𝑜𝑏𝑖𝑙𝑒𝑛𝑒𝑡 = 𝐻𝑖 ×𝑊𝑖 × 𝐶𝑖 ×𝐻𝑘 ×𝑊𝑘 + 𝐶𝑖 × 𝐶𝑜 ×𝐻𝑖 ×𝑊𝑖 ×𝑊𝑘 (4)

𝐶𝑚𝑜𝑏𝑖𝑙𝑒𝑛𝑒𝑡
𝐶𝑡𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

= 1
𝐶𝑜

+ 1
𝐻𝑘 ×𝑊𝑘

(5)

where 𝐶𝑚𝑜𝑏𝑖𝑙𝑒𝑛𝑒𝑡 is the computation cost of MobileNetV1, 𝐻𝑖 is the
height of the input array, 𝑊𝑖 is the width of the input array, 𝐶𝑖 is the
channel of the input array, 𝐻𝑘 is the height of the kernel, 𝑊𝑘 is the
width of the kernel, and 𝐶𝑜 is the channel of the output array.

MobileNet-224 (MobileNetV1) achieves a similar classification accu-
racy (70.6%) as VGG16 (71.5%) on the ImageNet dataset. MobileNet-
224 has far fewer parameters (4.2 million) than VGG16 (138 million);
thus, it is faster than VGG16. The VGG-M network is modified based on
VGG16, which has a similar accuracy in image classification. It is pos-
sible to use this method to accelerate the existing speaker verification
process.

4. Proposed approach

The grasping system shown in Fig. 4 contains a smartphone, a
microphone, and a micro-controller. The microphone inputs raw data
into the smartphone, and all the personalized voice activation and
verification are calculated onboard. The user will wear a microphone
placed on the collar or shirt, and the microphone is connected by a wire
to a smartphone located in the patient’s pocket. The smartphone and
microcontroller communicate through Bluetooth. The micro-controller
is responsible for processing signals from sensors and perform force
feedback control and slip detection.

Unlike Apple’s trigger word ‘‘Hey Siri’’ or Google’s trigger word ‘‘Ok
Google’’, the trigger word proposed in this paper can be customized.
Apple and Google use text-dependent voice activation that require
users to activate the system using predefined trigger words. The system
proposed in this paper uses text-independent voice activation, which
means the user can define the trigger word they prefer. Also, Apple
and Google only perform speaker verification on the trigger word
after the system is activated. Several problems can be caused by using
the built-in voice assistant. For example, when the user has dinner
in a restaurant, the system is continuously activated due to frequent
grasping of utensils while eating. If someone sitting next to the user
said something similar for example to ‘‘release.’’, then the system may
pick up that command and drop his utensil.

4.1. Electronics and low level control

The electronics design is portable, has low latency, and modu-
larized. The electronics and power supply can be attached and de-
tached easily. This design can be easily modified and attached to other
exoskeleton gloves other than Xu et al.’s glove.

The micro-controller, motor-controllers, and power supply are in
three separated units connected with MOLEX connectors as shown in
Fig. 5. The battery in the power supply unit can be easily disconnected
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Fig. 4. Personalized voice activated grasping system overview.

Fig. 5. Electronics: (Top right) Side mount computational unit and motor control unit.
(Bottom right) Power conversion unit with battery.

and changed to a different battery with lower or higher capacity. The
voltage converter unit dimensions are 55 mm × 35 mm × 15 mm, and
the battery dimensions are 62 mm × 35 mm × 18 mm. The micro-
controller and motor controllers are separated, and each has a size of
62 mm × 25 mm × 15 mm. The size of each unit is compact and can
be easily mounted on both sides of the arm.

Three separate PCBs were designed to place all the components
on the computational box and power conversion. The components
overview of each layer is shown in Fig. 6.

The onboard microcontroller is responsible for sensor reading and
performing low-level control, including force control and slip detection.
The slip detection uses the same idea as Lee [25] proposed to measure
the force change on the fingertip to detect slip. Instead of using a
force sensor, the SEA is used as the force sensing device. An integrated
wearable battery box will supply power for two hours of continuous
operation.

Encoders and angular potentiometers are attached to measure each
finger and wrist angle and calculate the force output of the SEAs. A
4

Fig. 6. Electronics overview.

Fig. 7. Structure of low-level control.

Teensy 4.0 micro-controller was selected to read data from sensors and
perform low-level control. A real-time system was used to minimize
sensor reading latency and provide the ability to perform parallel
computing. The structure of the low-level control system is shown in
Fig. 7.
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Fig. 8. Structure of the CVASV HMI.

4.2. CVASV HMI

The configurable personalized voice activation and command sys-
tem can be divided into two sections. The first section controls the
triggered activation process. The loudness level of the input audio is
used as a trigger. If the loudness is above a certain threshold, the system
will pass the data into the verification section.

The verification section contains the verification process. The key-
word is verified using the Google Web Speech API, first. If the keywords
are correct, the data is passed into the verification model. If the
verification result showed high similarity with the registered user,
the command is accepted. Fig. 8 shows the thread assignments and
the tasks that occur in each thread. The configurable voice activation
section takes the raw audio data as input and outputs the accepted
audio data. The microphone streaming callback continuously generates
0.5-second audio segments. The segments are processed by the noise
reduction and loudness filter in the audio collection thread. Commands
are likely to be spread in between multiple audio segments. The audio
collection thread’s job is to combine these audio segments into com-
mands based on the loudness. For example, if a ‘‘hey glove’’ command
is located in 3 separate audio segments, the audio collection thread will
combine these three segments into one 1.5 s duration audio segment.

The audio collection thread contains a noise reduction filter and
a loudness filter. If the loudness is greater than the threshold and
a complete sentence has been detected, the audio collection thread
enters the pre-active mode. The audio data queue then sends data
from the audio collection thread to the audio processing thread under
pre-active mode. The voice processing thread consists of two stages.
The command detection stage uses voice recognition API. After the
command is accepted, it enters the speaker verification stage. The
MobileNetV1 speaker verification system verifies if the audio belongs
to one of the enrolled speakers.

4.3. Configurable voice activation

The voice activation system includes a noise reduction filter, a
loudness filter, and a command detector. The system is designed to
5

Fig. 9. Noise filter.

Fig. 10. Flowchart of loudness detection.

detect possible activation commands using minimal computational cost.
The system enters a pre-activated mode if the user’s voice intensity is
greater than a threshold. A human-like voice is checked using voice
activation API to verify if an activation trigger-word is present. The
system then enters into an activated mode, and the audio is passed to
the voice verification system.

The raw input of the microphone voice contains high and low-
frequency noise. With a noise reduction filter, the system will enter
the pre-active mode less frequently from false-positive activations in a
noisy environment.

A noise-reduction filter is used to minimize high and low-frequency
noise. It converts raw input from the microphone to the
time-independent frequency domain using a Fourier transform. The
total relative power density within each frequency band is measured.
High-frequency and low-frequency bins are considered to be noise and
are subsequently trimmed from the spectrum. The time-independent
Fourier transform [28] of the original audio data and the filtered audio
data are shown in Fig. 9. The remaining frequencies contain potential
human voices, which then enter the loudness detector.

The loudness detector aggregates small audio segments into com-
plete sentences. Audio data containing a loudness level above a certain
threshold sets the system into pre-active mode. The input data is a
0.5-second filtered audio segment. These audio segments are grouped
into a larger audio segment based on the margin between each word.
If the margin between words is longer than 0.5-seconds, the sentence
ends. The loudness detector with audio aggregation is implemented
according to the flowchart described in Fig. 10.

After the loudness detector detects a complete sentence, the audio
data is sent to the audio processing thread for voice recognition. The
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loudness detector keeps monitoring the environment. In the voice
processing thread, the complete sentence will be recognized using the
Google Web Speech API. However, any voice recognition API can be
used. Voice recognition APIs from Amazon, Google, or Apple are proven
to be accurate and require a low computational cost.

If the system is not activated, the API result is used for activating
the trigger-word detection. The API result is forwarded directly as an
unverified command if the system is already activated. Words with
similar pronunciation to the activation trigger-word or the command
itself are accepted. After checking that the trigger-word or command
is valid, speaker verification is ultimately performed using the filtered
audio data.

4.4. Voice verification

The voice verification method was improved based upon Nagrani
et al. [26] VGG-M with the Softmax loss function speaker verification
method. Instead of using VGG-M, the low computational cost network
MobileNetV1 was used. The size of the MobileNetV1 network was
modified by reducing it to 75% of the original network such that
the alpha value equals 0.75. The network was modified to adapt 2D
spectrum input.

The training procedure for MobileNetV1 is similar to the baseline
VGG-M method. Filtered audio data from the previous speaker activa-
tion section is converted into a 2D spectrum [28] with both frequency
and time information. The 2D spectrum is fed into MobileNetV1. The
speaker utterance is grouped using the Global Average Pooling (TAP)
into 768 features and then classified using a dense layer. The loss
function used for classification was the standard Softmax loss function
given by:

𝑃 (𝑦 = 𝑗|𝑥) = 𝑒𝑋
𝑇𝑊𝑗

∑𝐾
𝑘=1 𝑒

𝑋𝑇𝑊𝑘
(6)

where 𝑥 is the spectrum input, 𝑗 is the label of a certain speaker, 𝑋 is
the output of the feature from the neural network, 𝑘 is the number of
classes, and 𝑤 is the weighting vector. The training process is shown in
Fig. 11.

During the speaker verification procedure, the last dense layer of
the MobileNetV1 is detached. The output of the network has 768
features. The distance between the two audio features vectors 𝐴 and 𝐵
is calculated. If the distance is less than an enrollment threshold, these
two audios are from the same speaker. The verification procedure is
shown in Fig. 11. The distance between features is calculated by the
cosine of the distance [29] (𝐷𝑐) defined as:

𝐷𝑐 =
∑𝑛

𝑖=1 𝐴𝑖𝐵𝑖
√

∑𝑛
𝑖=1 𝐴

2
𝑖

√

∑𝑛
𝑖=1 𝐵

2
𝑖

(7)

During the enrollment process, the user needs to record a 𝑥-second
long enrollment audio. The audio is then randomly cut into 𝑛 audio
segments, each having a 3-second length. These 𝑛 audio clips are
processed by the neural network, and each audio clip is turned into
a feature vector (𝐹 ). The average enroll-feature vector (𝐹𝑎𝑣𝑔_𝑒𝑛𝑟𝑜𝑙𝑙) can
be calculated through Eq. (8).

𝐹𝑎𝑣𝑔 =
∑𝑛

𝑘=1 𝐹𝑛

𝑛
(8)

During the verification process, the input test audio is cut into 𝑛 audio
segments, each having a 3-second length. The average test-feature
vector (𝐹𝑎𝑣𝑔_𝑡𝑒𝑠𝑡) can also be calculated through Eq. (8).

The average distance between the same speaker and different speak-
ers over a verification training data set can be calculated and used as
the verification threshold. The verification training data set contains
𝐾 speakers. The threshold (𝑇 ) is chosen by calculating the mean
distance between the average enroll-feature (𝐹𝑎𝑣𝑔_𝑒𝑛𝑟𝑜𝑙𝑙) and the average
test-feature (𝐹𝑎𝑣𝑔_𝑡𝑒𝑠𝑡) over 𝐾 speakers, as shown in Eq. (9).

𝑇 =
∑𝐾

𝑘=1 𝑑𝑖𝑠𝑡(𝐹𝑎𝑣𝑔_𝑒𝑛𝑟𝑜𝑙𝑙 , 𝐹𝑎𝑣𝑔_𝑡𝑒𝑠𝑡) (9)
6

𝐾

Fig. 11. Training and testing with modified MobileNetV1. (A) Training add-on. (B)
Testing add-on.

Table 1
Latency in low level control of the personalized voice activated grasping
system.

Designed time cost Latency

Sensor reading 10 ms 0 ms
SEA position control 10 ms 0 ms
SEA force control 110 ms 0 ms
Bluetooth communication 100 ms 2 ms

5. Experiments

5.1. Slip detection and low-level control

The latency of the low-level control has been tested. Three major
components can cause latency: sensor reading, SEA position control,
and SEA force control. The micro-controller used is a Teensy 4.0
@ 800 MHz, and latency was measured for all three components.
The results are provided in Table 1. The experiment demonstrated
that the multi-threading system is well designed, where the low-level
control only has a total of 2 ms latency caused by the Bluetooth
communication.

According to Lee et al. [25], detecting the force differences between
different fingertips can indicate slippage of the grasped object. In this
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Fig. 12. Slip detection using linear SEA.

Fig. 13. Slip detection using rotatory SEA.

experiment, instead of using a resistor-based force-sensor, an SEA was
used to measure contact forces. One experiment demonstrated that a
plastic bottle could be stably grasped with minimal force using a single
finger SEA. The single finger SEA is manually rotated by 90 degrees and
shaken until slip can be visually observed. During this process, spring
compression vs. time is recorded. The results of the linear SEA readings
are shown in Fig. 12, and the results of the rotatory SEA readings are
shown in Fig. 13. Spring compression is proportional to force; thus, the
change in spring compression is proportional to the change in force.
The SEA detects the slip, and the low-level force feedback control can
cause the SEA to apply the appropriate level of force to eliminate slip.
7

Fig. 14. ROC curve of CVASV verification on VoxCeleb1 test dataset.

5.2. CVASV HMI

5.2.1. Feature extractor
The feature extractor training is performed on the VoxCeleb1

dataset. The VGG-M method will be used as a performance baseline.
The VoxCeleb1 [30] dataset was used for training the voice verification
system in this research. This dataset contains 1251 celebrities giving
presentations in different environments. There are over 100,000 utter-
ances, and 40 speakers are chosen for the verification test. The dataset
contains noisy data, which is suitable for training a robust speaker
verification model. A 3-second audio clip is randomly extracted from
each audio file and converted to a 512 × 300 spectrum using Fourier
transform. The 512 × 300 spectrum is used to train both MobileNetV1
and VGG-M baseline networks. All networks will classify input audio
data into 1251 classes. The classification result is shown in Table 2.

5.2.2. Speaker verification
The speaker verification dataset is from the VoxCeleb1 verification

dataset. It contains 40 speakers that have IDs from 270–309. Two
audios are given during the verification testing process: one is used as
enrolled data, and the other is used as test data. The verification test
data and the enrolled data are randomly divided into three segments,
consisting of 3-second audio. The time cost to process one 3-second
audio clip will be measured to compare the performance. The result
can be visualized by the receiver operating characteristic (ROC) curve
shown in Fig. 14.

The performance of using MobileNetV1 is now compared to the
original method, which uses VGG-M. The performance comparison
between the modified MobileNetV1 (MBN) and the VGG-M is shown in
Table 2. The modified MobileNetV1 achieves a 0.8% higher accuracy in
classification. The modified MobileNetV1 has a 2.4% higher ERR rate
than the baseline VGG-M in the verification section. However, using
MobileNetV1 as the feature extractor reduces the total parameters in
the neural network by 89.6% and was on average 17.7% faster than
using VGG-M.

Table 3 compares the verification method with state-of-the-art
speaker verification methods on the Voxceleb1 dataset. The baseline
method in this paper is slightly different than the ERR rate as Nagrani,
et al. [26] proposed due to the different aggregation method. The test
data in VoxCeleb1 is longer than 3 s and has a variable length. We chose
not to use variable average pooling to adapt different input lengths due
to the fact that our application is used for short commands that are less
than 3 s long.
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Table 2
HlComparison between Modified MobileNetV1 and the baseline VGG-M method.

MBN VGG-M

Classification accuracy 80.0% 79.2%
ERR rate 12.4% 10.0%
Time cost 73.2 ms 88.9 ms
Total parameters 1,832,544 17,691,328

Bold text highlights better performance.

Table 3
Comparison between the Modified MobileNetV1 and other state-of-the-art speaker
verification methods on VoxCeleb data set.

Author Network Aggregation EER

Proposed MBN Rand3S 12.4%
Proposed VGG-M Rand3S 10.0%
Nagrani et al. [26] GMM-UBM N/A 15.0%
Nagrani et al. [26] I-vectors+PLDA N/A 8.8%
Nagrani et al. [26] VGG-M TAP 10.2%
Chung et al. [31] VGG-M-SC TAP 5.94%
Xie et al. [32] Thin-ResNet-34 TAP 10.48%
Xie et al. [32] Thin-ResNet-34 GhostVLAD 3.22%

TAP: Temporal Average Pooling.
VGG-M-SC: VGG-M network with softmax and contrastive loss.
Rand3S: average of random 3-second audio clip.

5.2.3. RML exoskeleton voice control dataset
This dataset contains ten-speaker models that contain six males

and four females, including Asian accents, Indian accents, and native
North American English speakers. Each speaker model is made up of
2 sections: an enrollment section and a testing section. The enrollment
section contains 5 commands as enrollment data: ‘‘hey glove’’, ‘‘grasp
bottle’’, ‘‘grasp cup’’, ‘‘grasp toothbrush’’, and ‘‘release’’. The enrollment
data is recorded when each speaker reads these commands in a quiet
room with normal speed and tone. This section is used to enroll the
speaker and tune the CVASV HMI. The testing section contains 20–25
short commands for each speaker, recorded with various background
noise. This section is used to test the performance of the CVASV HMI.
This dataset can be used on other voice command systems with similar
design principles as well.

5.2.4. CVASV HMI performance on RML dataset
The CVASV HMI is configured to use Google Web Speech API for

commands classification. The text generated by Google API is classified
into 6 categories by the number of matching characters, including 1 ac-
tivation command, 4 grasp commands, and an unknown command. The
classification performance is measured by the classification accuracy
shown in Eq. (10).

𝐴𝑐𝑐 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁
(10)

𝐴𝑐𝑐 − Classification accuracy
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − Number of correctly classified commands
𝑁 − Number of classified commands

The verification section uses MobileNetv1 as a feature extraction net-
work and uses a cosine distance to measure speakers’ similarity. After
observing the ROC curve, the threshold is set to 0.25 to achieve a good
true acceptance (TA) rate while avoiding false acceptance (FA).

The first experiment was conducted to test the performance of the
CVASV HMI on RML dataset. During the enrollment, each speaker has
five enrolled models which represent each different command. The
enrollment model in the RML dataset is used to enroll each speaker.
All the commands are tested in two parts: classification and verifica-
tion. The performance of classification is evaluated by the Command
8
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Table 4
CVASV HMI performance test at cosine distance
threshold = 0.25.
Speaker TA rate FA rate

A 95% 3.1%
B 100% 9.3%
C 100% 10.7%
D 100% 8.6%
E 100% 12.4%
F 92% 4.9%
G 92% 4.4%
H 100% 11.2%
I 96% 7.6%
J 96% 6.2%

Table 5
Time cost to process a one audio command.

Time cost

Noise reduction filter 2.12 ms
Loudness filter (𝐷𝑒) 2.45 ms
Audio collection subsystem 5.02 ms
Spectrum conversion 12.32 ms
Voice recognition API 34.47 ms
MobileNetV1 feature extractor 126.2 ms
Voice recognition subsystem 182.58 ms

Acceptance rate shown in Eq. (10), which resulted in a classification
accuracy of 94.1%.

The accepted command is then verified using the verification model.
CVASV HMI’s performance is quantified using the true acceptance (TA)
rate and false acceptance (FA). The verification true acceptance (TA)
rate is defined by Eq. (11). The higher the TA rate, the better the model
is. The verification false acceptance (FA) rate is defined by Eq. (12).
The lower the FA rate, the better the model is. The results are shown
in Table 4.

𝑇𝐴𝑅𝑎𝑡𝑒 =
𝑁𝑇𝐴
𝑁𝑠𝑎𝑚𝑒

(11)

𝐹𝐴𝑅𝑎𝑡𝑒 =
𝑁𝐹𝐴
𝑁𝑑𝑖𝑓𝑓

(12)

𝑇𝐴𝑅𝑎𝑡𝑒 − True acceptance rate

𝑇𝐴 − Number of commands verified to be from
he same user are from same users

𝐹𝐴 − Number of commands verified to be from
he same user are from different users

𝑠𝑎𝑚𝑒 − Number of commands from the same user

𝑑𝑖𝑓𝑓 − Number of commands from different users.

The second experiment tested the latency of the system. The CVASV
MI is designed to run in real-time on a portable device reliably. This
xperiment was done using a computer with a 2.2 GHz six-core Intel
7 processor to simulate the mobile device. The program uses only one
hread with the CPU frequency limited to 2 GHz and RAM limited to
Gigabytes. The latency for each component is shown in Table 5. The

ntire system’s latency is 182.58 ms, which is faster than most HMIs
nd can run in real-time on a portable device.

The third experiment was conducted to study the impact of noisy
ata on CVASV HMI. The same command of the same speaker under
ifferent background noise was compared. The results are shown in
able 6. The verification model has higher cosine distance under noisy
nvironment.

The fourth experiment was conducted to study how biological gen-
er influences the verification system. Speaker A and speaker B are of

pposite sex. Speaker A is enrolled and tested with speaker B’s testing
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Table 6
Cosine distance between same speaker under different background noise.
Command Noisy dis Quiet dis

‘‘hey glove’’ 0.17 0.12
‘‘grasp toothbrush’’ 0.13 0.11
‘‘grasp bottle’’ 0.12 0.06
‘‘grasp cup’’ 0.12 0.09
‘‘release’’ 0.21 0.13

Table 7
Cosine distance between different sexes.
Command Same sex dis Oppos. sex dis

‘‘hey glove’’ 0.52 0.48
‘‘grasp bottle’’ 0.37 0.39
‘‘grasp cup’’ 0.47 0.42
‘‘grasp toothbrush’’ 0.44 0.39
‘‘release’’ 0.28 0.51

Table 8
Cosine distance of speaker with different accents.
Command Distance

‘‘hey glove’’ 0.32
‘‘grasp toothbrush’’ 0.34
‘‘grasp bottle’’ 0.42
‘‘grasp cup’’ 0.38
‘‘release’’ 0.47

data. Theoretically, none of these commands will be accepted. Speaker
A is then enrolled and tested with speaker C’s testing data, where
Speakers A and C are of the same sex. Theoretically, none of these
commands should be accepted either. The results of this experiment
are shown in Table 7.

There were no significant differences between the two scenarios
when performing verification over speakers of the same and opposite
sex. All the test data performed above the 0.25 distance threshold as
expected.

The fifth experiment was done to study how the accent will affect
the CVASV HMI. Speaker E and Speaker C are of the same gender.
Speaker E is a native English speaker without a noticeable accent.
Speaker C is a fluent English speaker with a noticeable accent. From
Table 4, a speaker with an accent will have lower accuracy in the
recognition system, but the verification system is not affected. In this
experiment, verification accuracy was tested. Speaker E is enrolled and
tested against speaker B’s testing data. Theoretically, none of these
commands will be accepted. The results are shown in Table 8. The
results proved that accent does not affect the verification system. All
distance values are higher than the 0.25 threshold as expected.

The sixth experiment tested whether speaker verification can verify
the same speaker with a genuine verification model. As mentioned
previously, for each speaker, each command has its enrollment model.
This experiment was performed to verify whether using a genuine
model for all commands is feasible. All the enrollment commands are
combined and enrolled as a genuine model for speaker A, and all
test data was tested against this command. The results are shown in
Table 9. The same speaker saying different commands has a similar
physical distance to different speakers saying the same command. The
commands are too short to distinguish between similar voices. To use a
genuine model to perform speaker verification, the command needs to
be made longer. However, using a longer command is not practical.
The current solution is to have a separate model for each speaker
containing every command. Using a separate model for each command
and speaker will allow the speaker verification network to distinguish
between different speakers.
9

Table 9
Cosine distance between different commands of same
speaker.
Command distance

‘‘hey glove’’ 0.34
‘‘grasp toothbrush’’ 0.42
‘‘grasp bottle’’ 0.33
‘‘grasp cup’’ 0.33
‘‘release’’ 0.33

Fig. 15. Grasping with personalized voice activated grasping system using linear SEA.

5.3. Personalized voice activated grasping system

on the SEAs. Both rotatory and linear SEAs are used in the ex-
periment. This experiment is conducted to prove the feasibility of
the system. The experiment with hardware is to demonstrate that all
the subsystems can work together with no problem. The high-level
control program runs on a computer with limited RAM and CPU thread
number to simulate a cell phone. The microphone used is the integrated
microphone on a wired Apple Ear-pod connected to the simulated cell
phone. The user is wearing the ear-pod while speaking the command.
The experiment includes using the CVASV HMI to initialize the grasp,
using SEA to apply proper force, and using slip detection to maintain
its stability. The results are shown in Figs. 15 and 16. The CVASV HMI
successfully initiated the grasp. The electronics and low-level control
functioned flawlessly to grasp a heavy object. When the angle changes,
the slip detection algorithm can detect slip and apply additional force
incrementally to maintain a stable grasp. The latency between inputting
a voice command to the glove and initiating a grasp is 184.58 ms. This
latency proved the CVASV HMI, and the low-level control can run in
real-time with low latency.

5.4. Energy consumption

The energy consumption experiment performed measures the en-
ergy consumption of the control unit, the rotatory SEA, the linear
SEA, and CVASV HMI. The power consumption is measured through
the power supply current. The result shows the power consumption
averaged within 5 s. The SEAs’ power consumption is measured with
the control unit connected. The result is shown in Table 10.
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Fig. 16. Grasping with personalized voice activated grasping system using rotatory
SEA.

Table 10
Power consumption of the exoskeleton.
Part Status AVG power (W)

Control Unit idle 0.66
Control Unit active 0.9
Rotatory SEA idle 0.73
Rotatory SEA hold grasping 1.37
Rotatory SEA moving 2.68
Linear SEA idle 0.72
Linear SEA hold grasping 0.97
Linear SEA moving 3.37

Table 11
Power consumption of CVASV HMI.
Status Loss in battery Power (W)

idle 9% 2.925
active 21% 6.825

The CVASV HMI has not been deployed onto a smartphone yet.
The power consumption experiment is designed to approximate the
battery usage on a smartphone and improve the system before it is
deployed on a smartphone. A laptop with a 5953 mAh, 11.4 V battery
is used in this experiment. The screen is turned off, and no additional
programs were running other than the CVASV HMI. The CPU frequency
is limited to 2 GHz, and the RAM is limited to 2 Gigabytes. The result is
measured in loss of battery percentage. Idle status measured the power
consumption when the system is placed in a noisy room for 2 h. Under
these conditions, the CVASV system will constantly go into pre-active
mode due to the above threshold noise. Active status measured the
power consumption when the system is placed in the same noisy room.
The system is activated 50 times and input the ‘‘grasp’’, ‘‘Release’’,
‘‘Stop’’ commands. The results are shown in Table 11.
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6. Future work

6.1. Electronics and hardware

The experiments on a single finger proved that the electronics and
hardware fulfill all the requirements. The entire glove needs to be
manufactured and assembled to enable further testing of the complete
system.

6.2. Command recognition subsystem

Command classification using Google Web Speech API has achieve
94.1% command classification rate, 97.1% ture acceptance rate and a
35 ms time cost. However, it requires an internet connection to perform
web computing. Connection to the internet is crucial to the CVASV
HMI, which makes it less portable. There might be situations where
the patient does not have internet access. In the future, we will consider
replacing the Google Web Speech API with local HMM based command
classifiers, such as, LD3320 speech chip, Julius API, or PocketSphinx.

6.3. Speaker verification subsystem

The verification system achieves an average of a 97.1% true pos-
itive rate and a 7.84% false positive rate when tested with the RML
voice dataset. However, there are still some improvements that can
be made. Nagrani et al. [26] has proven that using large margin
Softmax loss function [33] will improve the classification accuracy
of VGG-M. Extending the training dataset to VoxCeleb2 [31] should
improve the accuracy without any detrimental effects. The speaker
verification system consumes a relatively large amount of energy. In
applications where a stable network is available, we recommend using
cloud computing for faster speed and low energy consumption.

7. Conclusion

The Personalized Voice Activated Grasping System proposed in this
research was proven to be fast, accurate, portable, and a secure method
to control Xu et al.’s exoskeleton glove through voice activation. The
electronics and hardware could function without issues for more than
100 h of testing and proved to be reliable. The functionality was
complete and was able to provide force feedback, force control, and
connectivity. The electronics and hardware performed well and did
not require any improvement. The low-level control system was fast
and accurate, and the force feedback SEAs were accurate and could
detect slip. The CVASV HMI can distinguish between different speakers
and recognize different commands. The entire system has a less than
200 ms latency and has an average 91.4% chance to classify and verify
the command correctly. Table 12 shows the performance comparison
between the personalized voice activated grasping system and other
state-of-the-art short voice command systems.

The design principle of the intelligent force grasping system is
fully configurable. The application of this system is not limited to
specific exoskeleton gloves. This paper uses the Xu et al.’s glove to
better understand how the components are designed. The power supply
unit can be quickly disconnected and replaced with any power supply
unit based on different applications. The low-level electronics can be
replaced by any compact design and can provide sufficient computing
power to control the exoskeleton. The CVASV HMI can also be pro-
grammed to adapt different automatic speech recognition (ASR). This
paper aims to provide voice recognition and speaker verification based
on a fully customizable system that can be used and improved by other
researchers.

The Personalized Voice Activated Grasping System will be further
tested on the RML glove after the complete glove is finished. The RML
exoskeleton dataset will be extended to 50 speakers with data collected
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Table 12
Comparison between personalized voice activated grasping system and other
state-of-the-art voice command system.

Author Method Acc* CV-SV

Proposed GoogleAPI+CNN 91.4% Yes
He et al. [34] GoogleAPI 92% No
El-emary et al. [35] GMM < 85% No
Gomez et al. [36] MG GMM+SM 88% No
Gomez et al. [36] HMM 100% No
Megalingam et al. [37] PocketSphinx: HMM 90% No
Pleva et al. [38] Julius: HMM 91% No
Guo et al. [39] LD3320 speech chip 94% No

CV-SV: Customized voice activation and speaker verification.
Acc*: For HMIs without speaker verification, Acc is the classification accuracy. For this
paper, Acc stands for system accuracy, which is the classification accuracy times the
true acceptance rate at 0.25 threshold.
GMM: Gaussian Mixture Model.
MG GMM+SM: Mouth gesture based detection using GMM and state machine.
HMM: Hidden Markov Model.

from real patients’ clinical trials. With the data from actual patients, the
system can be modified to assist patients.

The CVASV HMI will be applied on a smartphone and tested with
a larger dataset. Suppose the recognition accuracy is not satisfactory
during further testing. In that case, the Google API will be removed, and
a deep learning-based short-command recognition system will be used
to increase the recognition accuracy. The Personalized Voice Activated
Grasping System will also be tested with patients to improve the user
interface.
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Appendix A. Multi-threading low-level control source code

https://github.com/yunfei96/Multi-threading-Exoskeleton-Glove-C
ontrol-Teensy-Arduino-.git
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Appendix B. Speaker verification training source code

https://github.com/yunfei96/CVASV-Speaker-Verification-Training
-.git

Appendix C. Cvasv hmi source code

https://github.com/yunfei96/Voice-Activation-and-Speaker-Verific
ation-Command-System.git
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